Experimental measurements and modeling of solvent activity and surface tension of binary mixtures of polyvinylpyrrolidone in water and ethanol

Majid Taghizadeh, Saber Sheikhvand Amiri

Abstract


In this paper, the density (), viscosity () and surface tension () of solutions of polyvinylpyrrolidone (PVP) with the molecular weights of 25,000 (K25) and 40,000 (K40) in water and ethanol have been measured in the temperature range 20–65 °C and various mass fractions of polymer (0.1, 0.2, 0.3 and 0.45). The solvent activity measurements have been performed at 45 and 55 °C. Thereafter, two thermodynamic models for predicting the solvent activity and surface tension of binary polymer mixtures (PVP in water and ethanol) have been proposed. The Flory-Huggins theory and Eyring model were employed to calculate the surface tension of solution and solvent activity, respectively. Additionally, the proposed activity model was dependent on the density and viscosity of solution. Afterwards, the ability of these models at various temperatures and mass fractions has been investigated by comparing with the experimental data. The results confirmed that in this temperature range, these models have good accuracy.


Keywords


polyvinylpyrrolidone; solvent activity; surface tension; thermodynamic model

Full Text:

PDF (1,813 kB)

References


R. Sadeghi, Polymer 46 (2005) 11517

M. T. Zafarani-Moattar, Zh. Khoshsima, J. Chem. Thermodyn. 40 (2008) 1569

R. Sadeghi, M. T. Zafarani-Moattar, J. Chem. Thermodyn. 36 (2004) 665

M. Rahbari-Sisakht, M. Taghizadeh, A. Eliassi, J. Chem. Eng. Data 48 (2003) 1221

S. Trivedi, C. Bhanot, S. J. Pandey, Chem. Thermodyn. 42 (2010) 1367

M. Taghizadeh, A. Eliassi, M. Rahbari-Sisakht, J. Appl. Polym. Sci. 96 (2005) 1059

F. X. Feitosa, A. C. R. Caetano, T. B. Cidade, H. B. de Sant’Ana, J. Chem. Eng. Data 54 (2009) 2957

M. Herskowitz, M. J. Gottlieb, Chem. Eng. Data 30 (1985) 233

J. E. Mark, Polymer Data Handbook, Second Edition, Oxford University Press, 2009

M. Bortolotti, M. Brugnara, C. Della Volpe, D. Maniglio, S. Siboni, J. Colloid Interface Sci. 296 (2006) 292

Ch. Yang, Ch. Zhong, Chin. J. Chem. Eng. 12 (2004) 85

S. Enders, H. Kahl, J. Winkelmann, J. Chem. Eng. Data 52 (2007) 1072

D. T. Stanton, P. C. Jurs, J. Chem. Inf. Comput. Sci. 32 (1992) 109

G. W. Kauffman, P. C. Jurs, J. Chem. Inf. Comput. Sci. 41 (2001) 408

J. Livingston, R. Morgan, J. Am. Chem. Soc. 37 (1915) 1461

P. L. du Noüy, J. Gen. Physiol. 1 (1919) 521

R. Macy, J. Chem. Educ. 12 (1935) 573

K. Mysels, Colloids Surfaces A 43 (1990) 241

C. R. Reid, T. K. Sherwood, The Properties of Gases and Liquids, McGraw­Hill, New York, 1966

E. Egemen, N. Nirmalakhandan, C. Trevizo, Environ. Sci. Technol. 34 (2000) 2596

T. Oishi, J. M. Prausnitz, Ind. Eng. Chem. Process Des. Dev. 17 (1978) 333

F. Firouzi, H. Modarress, G. A. Mansoori, Eur. Polym. J. 34 (1998) 1489

E. Keshmirizadeh, H. Modarress, A. Eliassi, G. A. Mansoori, Eur. Polym. J. 39 (2003) 1141

M. S. High, R. P. Danner, Fluid Phase Equilib. 53 (1989) 323

L. H. Adams, Chem. Rev. 19 (1936) 1

M. Maali, R. J. Sadeghi, Chem. Thermodyn. 84 (2015) 41

S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Process, McGraw-Hill, New York, 1941

P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, New York, 1953

W. Brown, J. Appl. Polym. Sci. 11 (1967) 2381.




DOI: http://dx.doi.org/10.2298/JSC160505028T

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.970 (120 of 163 journals)
5 Year Impact Factor 0.997 (111 of 163 journals)