Molecular dynamic simulation study of molten cesium

Saeid Yeganegi, Vahid Moeini, Zohreh Doroodi

Abstract


Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded fluid Cs. Internal pressure, radial distribution functions (RDFs), coordination numbers and diffusion coefficients have been calculated at temperature range 700-1600 K and pressure range 100-800 bar. We used internal pressure to predict the metal-nonmetal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first picks of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature. 


Keywords


metal- nonmetal transition; MD simulation; internal pressure; RDF

Full Text:

PDF (1,322 kB)

References


C.T. Ewing, , J.P. Spann, J. R. Stone and R. R. Miller, J. Chem. Eng. Data 16 (1971) 27

C.T. Ewing, J.R. Spann, J. P. Stone, E. W. Steinkuller, R. R. Miller, J. Chem. Eng. Data 55 (1971) 508

W.D. Weatherford, R.K. Johnston, M.L. Valtierra, J. Chem. Eng. Data 9 (1964) 520

F. Roehlich, F. Tepper, R. L. Rankin, J. Chem. Eng. Data 13 (1968) 518

V. Moeini, J. Chem. Eng. Data 55 (2010) 1093

K. Matsuda, S. Naruse, K. Hayashi, K. Tamura, M. Inui, Y. Kajihara, J. Phys.: Conf. Series 98 (2008) 012003

V.M. Nield, M.A. Howe, R. L. McGreevy, J. Phys.: Condens. Matter 3 (1991) 7519

R. Winter, F. Noll, T. Bodensteiner, W. Glaser, P. Chieux, F. Hensel, Z. Phys. Chem. 156 (1988) 145

H. Z. Zhuang, X.-W. Zou, Z.-Z. Jin, D.-C. Tian, Physica B 253 (1998) 68

S. Jungst, B. Knuth, F. Hensel, Phys. Rev. Lett. 55 (1985) 2160

F.C. Frank, Proc. R. Soc. Lond. A 215 (1952) 43

A. Agoado, Phys. Rev. B 63 (2001) 115404

U. Balucani, A. Torcini, R. Vallauri, Physical Review B 47 (1993) 3011

J-F. Wax, R. Albaki, J.-L. Bretonnet, J. of Non-Crystalline Solids 312-314 (2002) 187

J.K. Baria, A. R. Jani, J. of Non-Crystalline Solids 356 (2010) 1696

Yokoyama, Physica B 291 (2000) 145

N. Farzi, R. Safari, F. Kermanpoor, J. of Molecular Liquids 137 (2008) 159

F. Juan-Coloa, D. Osorio-Gonzalez, P. Rozendo-Francisco, J. Lopez-Lemus, Molecular Simulation 33 (2007) 1162

D. Belashchenko, Inorganic Materials 48 (2011) 79

A. Nichol, G. J. Ackland, Phys. Rev. B 93 (2016) 184101

V. V. Chaban, O. V. Prezhdo, J. Phys. Chem. A, 120 (2016) 4302

R.P. Gupta, Phys. Rev. B 23 (1981) 6265

J.P.K. Doye, Comput. Mater. Sci. 35 (2006) 227

K. Michaelian, N. Rendon, I. L. Garzon, Phys. Rev. B 60 (1999) 2000

K. Michaelian, M.R. Beltran,I. L. Garzon, Phys. Rev. B 65 (2002) 041403.

M. Manninen, K. Manninen, A. Rytkönen, Simulation of Melting and Ionization Potential of Metal Clusters, In Latest Advances in Atomic Cluster Collisions, J. P. Connerade, A. V. Solov'yov, World Scientific, Imperial College Press, London, UK, 2004, p. 33

M.H. Ghatee, K. Shekoohi, Fluid Phase Equilibria 327 (2012) 14

J.A. Reyes-Nava, I. L. Garzion, M. R. Beltrian, K. Michelian, Rev. Mex. Fis. 48 (2002) 450

R. Winter, C. Pilgrrim, F. Hensel, JOURNAL DE PHYSIQUE IV 1 (1991) 45

F. Hensel, Fluid Alkali Metals at High Temperatures and Pressures, in High Pressure Chemistry, Biochemistry and Materials Science, R. Winter, J. Jonas, NATO ASI Series, Springer (Verlag), Italy, Aquafredda di Maratea, 1993, p. 401

F. Hensel,W.-C. Pilgrim, Int. J. Mod. Phys. B 6 (1992) 3709

E. Keshavarzi, G. Parsafar, J. Phys. Chem. B 103 (1999) 6584

V. Moeini, J. Chem. Eng. Data 55 (2010) 5673

G. Parsafar, E. A. Mason, Phys. Rev. B 49 (1994) 3049

J.O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids, John Willey & Sons, Inc, New York, USA, 1964, p. 647

G. Parsafar, E. A. Mason, J. Phys. Chem 97 (1993) 9048

I.N. Levine, Physical Chemistry, McGraw Hill, New York, USA, 2002, p. 55

F. Cleri, V. Rosato, Phys. Rev. B 48 (1993) 22

N.W. Ashcroft, N. D. Mermin, Solid state Physics, Holt, Rinehart and Winston, New York, USA, 1976, p. 284

N.H. March, Liquid Metals: Concepts and Theory, Cambridge University Press, Cambridge, London, UK, 1990, P. 155

I.T. Todorov, W. Smith, K. Trachenko & M.T. Dove, Journal of Materials Chemistry 16 (2006) 1911

N.B. Vargaftik, E. B. Gelman, V. F. Kozhevnikov, S. P. Naursakov, Int. J. Thermophys 11 (1990) 467

M.P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1989, p. 81

M.H. Ghatee, M. Bahadori, J. Phys. Chem. B 105 (2001) 11256

V.F. Kozhevnikov. S.P. Naurzakov, A.P. Senchenkov, J. Moscow Phys. Soc. 1 (1991) 171

V. Moeini, J. Phys. Chem. B 110 (2006) 3271

W. Freyland, Phys. Rev. B 20 (1979) 5104

K. Matsuda, K. Tamura, M. Inui, Phys. Rev. Lett. 98 (2007) 096401

K. Tamura, K. Matsuda, M. Inui, J. Phys.: Condens. Matter 20 (2008) 114102

Y. Marcus, Chem. Rev. 113 (2013) 6536

Y. Marcus, J. Mol. Liq. 79 (1999) 151

J. Yuan- Yuan, Z. Qing- Ming, G. Zi- Zheng, J. Guang-Fu, Chin. Phys. B 22 (2013) 083101




DOI: http://dx.doi.org/10.2298/JSC160725018Y

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.970 (120 of 163 journals)
5 Year Impact Factor 0.997 (111 of 163 journals)