Low-temperature-synthesized RuO2 from acidic chloride solution for the electrode coating applications

Gavrilo Šekularac, Sanja Eraković, Dušan Mijin, Vesna Pavelkić, Jasmina Stevanović, Vladimir Panić

Abstract


For the preparation of RuO2 coatings on Ti substrate, the RuO2 was synthesized in acidic aqueous medium by simple one-step low temperature-controlled microwave (MW) irradiation. The physical composition of synthesized solid phase was analysed through particle size distribution (PSD), whereas the coating was investigated for its capacitive response and activity in oxygen evolution reaction (OER). The oxide phase is found highly polydisperse, with overlapped fractions within rather narrow particle size range and clear tendency toward agglomeration. The smallest particles and their best resolved fractions were synthesized at the temperature just above the boiling point of the reaction medium, and quite below the chloride-to-oxide conversion temperature. Consequently, the highest OER activity was registered for RuO2/Ti anodes prepared from this sample, with strong indication of different oxide structure with respect to the electrodes prepared from samples synthesized at higher temperatures. However, the coatings from high temperature samples have considerably higher capacitance than those synthesized at lower temperatures. These findings can be correlated rather to MW temperature-dependent oxide structure than to different morphology analysed through PSD.


Keywords


electrocatalytic oxide materials; hydrothermal synthesis; microwave synthesis; electrochemical impedance spectroscopy; pseudocapacitance

Full Text:

PDF (1,563 kB)

References


S. Trasatti, W. O’Grady, in: H. Gerisher, C.W. Tobias (Eds.), Advances in Electrochemistry and Electrochemical Engineering, Wiley, New York, 1981, p. 177.

A. Cornell, F. Herlitz, in: Proceedings of the Fourth Kurt Schwabe Corrosion Symposium, Helsinki, Finland, 2004, p. 326.

S. Trasatti and W.E. O’ Grady in H. Gerischer and P. Delahay (Eds.), Advances in Electrochemistry and Electrochemical Engineering, Vol. 13, Interscience, New York, 1980, p. 177.

S. Horacek and S. Puschaver, Chem. Eng. Progress. 67 (1971) 71.

A. Nidola in S. Trasatti (Eds.), Electrodes of Conductive Metallic Oxides, Part B, Elsevier, Amsterdam, 1981, p. 627.

S. Trasatti, in Interfacial electrochemistry – theory, experiment and applications, A. Wieckowski, Ed., Marcel Dekker Inc., New York, 1999, p. 769

De Nora elettrodi network, 2009, http://www.lidaproducts.com, accessed May, 2009

B.Ž. Nikolić, V.V. Panić, in Encyclopedia of applied electrochemistry, G. Kreysa, K-I. Ota, R. F. Savinell, Eds., Springer, New York, 2014, p. 411

F. Herlitz, B. Hakansson, in Proceedings of the Fourth Kurt Schwabe Corrosion, Symposium, Helsinki, Finland, 2004, p. 32

K. Darowicki, S. Janicki, Corr. Sci. 41 (1999) 1165

S.M.A. Shibli, V.S. Gireesh, S. George, Corr. Sci. 46 (2004) 819.

E. O’Sullivan, J. White, J. Electrochem. Soc. 136 (1989) 2576

C.L.P.S. Zanta, A.R. De Andrade, J.F.C. Boodts, Electrochim. Acta 44 (1999) 3333.

V.V. Panić, A.B. Dekanski, T.R. Vidaković, V.B. Mišković-Stanković, B.Ž. Jovanović, B.Ž. Nikolić, J. Solid State Electrochem. 9 (2005) 43

S. Trasatti, P. Kurzweil, Platinum Metals Rev. 38 (1994) 46

B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic / Plenum Publishers, New York, 1999, p. 211

T. Jow, J. Zheng, J. Electrochem. Soc. 145 (1998) 49.

V. Panić, T. Vidaković, S. Gojković , A. Dekanski, B. Nikolić, Electrochim. Acta 48 (2003) 3805.

I.-H. Kim, J.-H. Kim, K.-B. Kim, Electrochem. Solid State Lett. 8 (2005) A369.

J. M. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrog Energy 29 (2000) 791

M. H. P. Santana, L. A. De Faria, J. F. C. Boodts, Electrochim. Acta 49 (2004) 1925

C. Comninellis, P.G.J. Vercesi, Appl. Electrochem. 21 (1991) 335

M. Yagi, E. Tomita, T.J. Kuwabara, Electroanal. Chem. 579 (2005) 83

Y. W. Jung, J. Lee, Y. Tak, Electrochem. Solid State Lett. 7 (2004) H5

P. S. Patil, R. W. Kawar, S. B. Sadale, Electrochim. Acta. 50 (2005) 2527

V. Jovanović, A. Dekanski, P. Despotov, B. Nikolić, R.J. Atanasoski, Electroanal. Chem. 339 (1992) 147

S. Ardizzone, S. Trasatti, Adv. Colloid Interf. Sci. 64 (1996) 173

N. Yoshinaga, W. Sugimoto, Y. Takasu, Electrochim. Acta. 54 (2008) 566

A. A. F. Grupioni, E. Arashiro, T. A. F. Lassali, Electrochim. Acta 48 (2002) 407

R. K. Karlsson, A. Cornell, Chem. Rev. 116 (2016) 2982

A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold, Mater. Chem. Phys. 94 (2005) 226

A. De Oliveira-Sousa, M. A. S. Da Silva, S. A. S. Machado, L. A. Avaca, P. De Lima-Neto, Electrochim. Acta 45 (2000) 4467

P. S. Patil, R. K. Kawar, S. B. Sadale, Appl. Surf. Sci. 249 (2005) 367

M.X. Xia, C.B. Wang, Y.S. Gong, Q. Shen, L.M. Zhang, Rare Met. Mater. Eng. 35 (2006) 820

V. V. Panić, B. Ž. Nikolić, J. Serb. Chem. Soc. 73 (2008) 1083

L. Massot, P. Palau, A. Savall, P. Taxil, J. New Mater. Electrochem. Sys. 10 (2007) 123

L. Xu, Y. Xin, J. Wang, Electrochim. Acta 54 (2009) 1820

J.R. Osman, J.A. Crayston, A. Pratt, D.T. Richens, J. Sol-Gel Sci. Technol. 46 (2008) 126

G. Šekularac , M. Košević, I. Drvenica, A. Dekanski, V. Panić, B. Nikolić, J. Solid State Electrochem. 20 (11) (2016) 3115

N. Božinović, B. A. Šolaja, I. M. Opsenica, J. Serb. Chem. Soc. 81 (11) (2016) 1225

A. M. Tasić, I. D. Sredović Ignjatović, Lj. M. Ignjatović, I. B. Anđelković, M. P. Antić, Lj. V. Rajaković, J. Serb. Chem. Soc. 81 (2016) 403

I. Povar, O. Spinu, J. Electrochem. Sci. Eng. 6 (2016) 123

J. P. Zheng, P. J. Cygan, T. R. Jow, J. Electrochem. Soc. 142 (1995) 2699

V. Panić, A. Dekanski, V. B. Mišković-Stanković, S. Milonjić, B. Nikolić, J. Electroanal. Chem. 579 (2005) 67

Y.-H. Fang, Z.-P. Liu, J. Am. Chem. Soc. 132 (2010) 18214.




DOI: http://dx.doi.org/10.2298/JSC161229040S

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.970 (120 of 163 journals)
5 Year Impact Factor 0.997 (111 of 163 journals)