Influence of the precursor chemical composition on heavy metal adsorption properties of hemp (Cannabis Sativa) fibers based biocarbon

Marija M. Vukčević, Biljana M. Pejić, Ivana S. Pajić-Lijaković, Ana M. Kalijadis, Mirjana M. Kostić, Zoran V. Laušević, Mila D. Laušević

Abstract


Waste hemp (Cannabis Sativa) fibers were used as sustainable and renewable raw materials for production of low-cost biocarbon sorbent for heavy metals removal. Carbon precursors of different chemical composition were obtained by oxidative and alkaline treatments of hemp fibers. Influence of lignocellulosic precursor chemical composition on hemp fibers-based biocarbon (HFB) characteristics was examined by BET surface area measurement, scanning electron microscopy and mass titration. It was found that lignin content and polymorphic transformation of cellulose increase the SBET of microporous HFBs, while hemicelluloses induce more homogeneous distribution of adsorption active sites. Heavy metal ions adsorption onto HFBs is primarily influenced by the amount of surface oxygen groups, while specific surface area plays a secondary role. Equilibrium data obtained for lead ions adsorption were analyzed by different nonlinear adsorption isotherms, and the best fitting model was chosen using standard deviation and Akaike information criterion (AICC). The maximum adsorption capacities of HFBs ranged from 103.1 to 116.3 mg Pb/g. Thermodynamic parameters showed that Pb2+ adsorption onto HFBs is a spontaneous and complex endothermic process, suggesting the coexistence of physisorption and chemisorption mechanisms.

Keywords


hemp fibers; chemical composition; biocarbon; heavy metal ions; adsorption mechanism

Full Text:

PDF (1,673 kB)

References


G. W. Beckermann, K. L. Pickering, Compos. Part. A-Appl. S. 39 (2008) 979

B. Singh, M. Gupta, in Natural fibers, biopolymers, and biocomposites; A. K. Mohanty, M. Misra, L. T. Drzal, Eds., CRC Press, Boca Raton, USA, 2005, p. 261-290

B. Volesky, Water Res. 41 (2007) 4017

B. Pejic, M. Vukcevic, M. Kostic, P. Skundric, J. Hazard. Mater. 164 (2009) 146

B. M. Pejic, M. M. Vukcevic, I. D. Pajic-Lijakovic, M. D. Lausevic, M. M. Kostic, Chem. Eng. J. 172 (2011) 354

M. Vukcevic, B. Pejic, M. Lausevic, I. Pajic-Lijakovic, M. Kostic, Fibers Polym. 15 (2014) 687

M. N. Nor, L. L. Chung, L. K. Teong, A. R. Mohamed, J. Environ. Chem. Eng. 1 (2013) 658

A. R. Mohamed, M. Mohammadi, G. N. Darzi, Sust. Energ. Rev. 14 (2010) 1591

J. M. Rosas, J. Bedia, J. Rodríguez-Mirasol, T. Cordero, Fuel 88 (2009) 19

Suhas; P. J. M. Carrott, M. M. L. Ribeiro Carrott, Bioresour. Technol. 98 (2007) 2301

M. Vukcevic, A. Kalijadis, M. Radisic, B. Pejic, M. Kostic, Z. Lausevic, M. Lausevic, Chem. Eng. J. 211-212 (2012) 224

M. Vukčević, B. Pejić, A. Kalijadis, I. Pajić-Lijaković, M. Kostić, Z. Laušević, M. Laušević, Chem. Eng. J. 235 (2014) 284

R. Yang, G. Liu, X. Xu, M. Li, J. Zhang, X. Hao, Biomass Bioenergy 35 (2011) 437

A. Bismarck, I. Aranberri-Askargorta, J. Springer, T. Lampke, B. Wielage, Polym. Compos. 23 (2002) 872

M. Kostic, M. Vukcevic, B. Pejic, A. Kalijadis, in Textiles: History, Properties and Performance and Applications, M. I. H. Mondal, Ed., Nova Science Publishers Inc., New York, 2014, p. 399-446

W. Garner, Textile Laboratory Manual: Fibers, Heywood Books, London, 1967, p. 52-113

E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373

K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Carbon 30 (1992) 1075

S. S. Barton, M. J. B. Evans, E. Halliop, J. A. F. MacDonald, Carbon 35 (1997) 1361

H. P. Boehm, Carbon 40 (2002) 145

J. S. Noh, J. A. Schwarz, J. Colloid Interface Sci. 130 (1990) 157

M. Vukčević, A. Kalijadis, S. Dimitrijević-Branković, Z. Laušević, M. Laušević, Sci. Technol. Adv. Mater. 9 (2008) 015006 (7pp) doi:10.1088/1468-6996/9/1/015006

Y.-S. Ho, W.-T. Chiu, C.-C. Wang, Bioresour. Technol. 96 (2005) 1285

I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361.

K.-Y. Shin, J.-Y. Hong, J. Jang, J. Hazard. Mater. 190 (2011) 36

Z.-Y. Yaoa, J.-H. Qi, L.-H. Wanga, J. Hazard. Mater. 174 (2010) 137

J. Wang, C. P. Huang, H. E. Allen, D. K. Cha, D.-W. Kim, J. Colloid. Interf. Sci. 208 (1998) 518.

Y. Liu, J. Chem. Eng. Data 54 (2009) 1981

S. Borysiak, J. Garbarczik, Fibres Text. East. Eur. 11 (2003) 104

J. Gassan, A. K. Bledzki, J. Appl. Polym. Sci. 71 (1999) 623

S. H. Lee, J. C. Rasaiah, J. Phys. Chem. 100 (1996) 1420

M. K. Aroua, S. P. P. Leong, L. Y. Teo, C. Y. Yin, W. M. A. Wan Daud, Bioresour. Technol. 99 (2008) 5786

K. Li, X. Wang, Bioresour. Technol. 100 (2009) 2810

L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, C. Zhang, Bioresour. Technol. 101 (2010) 5808

M. Kostic, B. Pejic, P. Skundric, Bioresour. Technol. 99 (2008) 94

Y. Liu, Y. J. Liu, Sep. Purif. Technol. 61 (2008) 229

Z. Liu, F. S. Zhang, J. Hazard. Mater. 167 (2009) 933

A. M. Kalijadis, M. M. Vukčević, Z. M. Jovanović, Z. V. Laušević, M. D. Laušević, J. Serb. Chem. Soc. 76 (2011) 757

G. D. Vuković, A. D. Marinković, S. D. Škapin, M. Ð. Ristić, R. Aleksić, A. A. Perić-Grujić, P. S. Uskoković, Chem. Eng. J. 173 (2011) 855




DOI: http://dx.doi.org/10.2298/JSC170310080V

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)