Copper(II) complexes with different diamines as inhibitors of bacterial quorum sensing activity

Ivana M Stanojević, Ivana Aleksic, Nenad S Drasković, Biljana Dj Glišić, Sandra Vojnovic, Jasmina Nikodinovic-Runic

Abstract


Three copper(II) complexes, trans-[Cu(1,3-pd)2Cl2].H2O (Cu1; 1,3-pd is 1,3-propanediamine), trans-[Cu(2,2-diMe-1,3-pd)2Cl2] (Cu2; 2,2-diMe-1,3-pd is 2,2-dimethyl-1,3-propanediamine) and  trans-[Cu(1,3-pnd)2Cl2].H2O (Cu3; 1,3-pnd is (±)-1,3-pentanediamine), were synthesized and structurally characterized by elemental microanalyses, IR, electronic absorption and reflectance spectra and molar conductivity measurements. The antimicrobial efficiency of the complexes against four clinically relevant microorganisms and their antiproliferative effect on the normal human lung fibroblast cell line MRC-5 were evaluated. Since in many bacteria, pathogenicity is regulated by an intercellular communication process called quorum sensing (QS), the effect of the copper(II) complexes Cu1-3 on bacterial QS has been examined. The obtained results showed that these complexes inhibited violacein production in Chromobacterium violaceum CV026, indicating their anti-QS activity via homoserine lactone (HSL) pathway. Two biosensor strains were used to determine which pathway, C4-HSL (N-butanoyl-homoserine lactone) or 3OC12-HSL (N-3-oxododecanoyl-homoserine lactone), was affected by the copper(II) complexes. The biological activities of the copper(II) complexes were compared with those for the nickel(II) complexes of the general formula trans-[Ni(L)2(H2O)2]Cl2 (L = 1,3-pd, 2,2-diMe-1,3-pd and 1,3-pnd).

Keywords


metal complexes; nitrogen-donor ligands; antimicrobial activity; cytotoxicity; interbacterial communication

Full Text:

PDF (1,245 kB)

References


K. D. Mjos, C. Orvig, Chem. Rev. 114 (2014) 4540

G. Gasser, N. Metzler-Nolte, Curr. Opin. Chem. Biol. 16 (2012) 84

M. Shabbir, Z. Akhter, J. Ahmad, S. Ahmed, V. McKee, H. Ismail, B. Mirza, Polyhedron 124 (2017) 117

C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 114 (2014) 815

Z. L. Harris, J. D. Gitlin, Am. J. Clin. Nutr. 63 (1996) 836s

S. Labbe, D. J. Thiele, Trends Microbiol. 7 (1999) 500

L. Ruiz-Azuara, M. E. Bravo-Gomez, Curr. Med. Chem. 17 (2010) 3606

M. M. Harding, Acta Crystallogr. Sect. D Biol. Crystallogr. 55 (1999) 1432

M. Diez, M. Arroyo, F. J. Cerdan, M. Munoz, M. A. Martin, J. L. Balibrea, Oncology 46 (1989) 230

K. Geraki, M. J. Farquharson, D. A. Bradley, Phys. Med. Biol. 47 (2002) 2327

D. Yoshida, Y. Ikeda, S. Nakazawa, J. Neurooncol. 16 (1993) 109

S. B. Nayak, V. R. Bhat, D. Upadhyay, S. L. Udupa, Indian J. Physiol. Pharmacol. 47 (2003) 108

M. E. Maragoudakis, Gen. Pharmacol. 35 (2000) 225

J. Folkman, Nat. Med. 1 (1995) 27

P. Szymański, T. Frączek, M. Markowicz, E. Mikiciuk-Olasik, Biometals 25 (2012) 1089

B. K. Singh, N. Bhojak, P. Mishra, B. S. Garg, Spectrochim. Acta A 70 (2008) 758

A. P. Singh, N. K. Kaushik, A. K. Verma, G. Hundal, R. Gupta, Eur. J. Med. Chem. 44 (2009) 1607

M. N. Patel, P. A. Parmar, D. S. Gandhi, Bioorg. Med. Chem. 18 (2010) 1227

N. S. Ng, M. J. Wu, C. E. Jones, J. R. Aldrich-Wright, J. Inorg. Biochem. 162 (2016) 62

J. do Couto Almeida, I. M. Marzano, M. Pivatto, N. P. Lopes, A. M. Da Costa Ferreira, F. R. Pavan, I. C. Silva, E. C. Pereira-Maia, G. Von Poelhsitz, W. Guerra, Inorg. Chim. Acta 446 (2016) 87

B. Đ. Glišić, I. Aleksic, P. Comba, H. Wadepohl, T. Ilic-Tomic, J. Nikodinovic-Runic, M. I. Djuran, RSC Adv. 6 (2016) 86695

M. A. Welsh, N. R. Eibergen, J. D. Moore, H. E. Blackwell, J. Am. Chem. Soc. 137 (2015) 1510

S. Atkinson, P. Williams, J. R. Soc. Interface 6 (2009) 959

M. Juhas, L. Eberl, B. Tümmler, Environ. Microbiol. 7 (2005) 459

N. S. Drašković, B. Đ. Glišić, S. Vojnovic, J. Nikodinovic-Runic, M. I. Djuran, J. Serb. Chem. Soc. 82 (2017) 389

M. B. Hansen, S. E. Nielsen, K. Berg, J. Immunol. Methods 119 (1989) 203

K. H. McClean, M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. Stewart, P. Williams, Microbiology 143 (1997) 3703

F. Massai, F. Imperi, S. Quattrucci, E. Zennaro, P. Visca, L. Leoni, Biosens. Bioelectron. 26 (2011) 3444

K. Duan, M. G. Surette, J. Bacteriol. 189 (2007) 4827

K. S. Siddiqi, H. Afaq, S. A. A. Nami, A. Umar, Synth. React. Inorg. Met. 33 (2003) 1459

G. B. El-Hefnawy, M. El-Kersh, S. H. Etaiw, R. El-Tabbakh, Polyhedron 16 (1997) 3997

S. J. Obrey, S. G. Bott, A. R. Barron, J. Organomet. Chem. 643-644 (2002) 53

A. Wutkowski, C. Näther, W. Bensch, Inorg. Chim. Acta 379 (2011) 16

B. J. Hathaway, Comprehensive Coordination Chemistry, vol. 5, In: G. Wilkinson, R. D. Gillard, J. A. McCleverty, Eds., Pergamon, Oxford, 1987

N. S. Drašković, D. D. Radanović, U. Rychlewska, B. Warżajtis, I. M. Stanojević, M. I. Djuran, Polyhedron 43 (2012)185

W. J. Geary, Coord. Chem. Rev. 7 (1971) 81

M. C. Sneed, J. L. Maynard, General Inorganic Chemistry, New York, 1942

G. G. Mohamed, Spectrochim. Acta A 64 (2006) 188

S. Chattopadhyay, P. Chakraborty, M. G. B. Drew, A. Ghosh, Inorg. Chim. Acta 362 (2009) 502

K. Nakamoto, Infrared spectra of inorganic and coordination compounds, 2nd ed., John Wiley & Sons, New York, 1970

M. Mousa AL-Noaimi, M. I. Choudhary, F. F. Awwadi, W. H. Talib, T. B. Hadda, S. Yousuf , A. Sawafta, I. Warad, Spectrochim. Acta A 127 (2014) 225

Y-H. Hu, W. Dang, C-S. Liu, L. Sun, Lett. Appl. Microbiol. 50 (2010) 97

T. Nakayama, N. Nomura, M. Matsumura, J. Appl. Microbiol. 102 (2007) 1300.




DOI: http://dx.doi.org/10.2298/JSC170706087S

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)