Density functional theory calculation of lipophilicity for organophosphate type pesticides

Filip Ž. Vlahović, Sasa Ivanovic, Matija Zlatar, Maja Gruden

Abstract


Density functional method with continuum solvation model is used for calculation of partition coefficient log KOW and determination of lipophilicity of 22 most frequently used organophosphate type pesticides. Excellent agreement with experimental data is obtained using three different density functional approximations (one local, one general gradient and one hybrid), and our result highlights DFT as a reliable and trustworthy method for calculation and of lipophilicity for this important class of molecules. Furthermore, calculated lipophilicity results are associated with experimentally determined LD50 and LC50 values, showing that the most toxic pesticides are these with transient characteristics (medium lipophilicity), although this concussion must be taken with a caution due to the many factors influencing the ingestion and action of a certain substance in the body beside lipophilicity.

Keywords


DFT; lipophilicity; organophosphate pesticides; toxicity; partition coefficient

Full Text:

PDF (1,190 kB)

References


B. Eskenazi, A. R. Marks, A. Bradman, K. Harley, D. B. Barr, C. Johnson, N. Morga and N. P. Jewell, Environ. Health Perspect. 115 (2007) 792.

M. Balali-Mood and M. Abdollahi, Basic Clin. Pharmacol. Toxicol., Springer London (2013).

World Health Report 2004, World Health Organ., Geneva.

M. Eddleston and M. R. Phillips, Br. Med. J. 328 (2004) 42.

C. H. S. Rao, V. Venkateswarlu, T. Surender, M. Eddleston and N. A. Buckley, Tropical medicine & international health : TM & IH 10 (2005) 581.

M. Eddleston, QJM: Int. J. Med. 93 (2000) 715.

P. D. Leeson and B. Springthorpe, Nat. Rev. Drug. Discov. 6 (2007) 881.

L. Karalliedde, S. Feldman, J. Henry and T. Marrs, Organophosphates and Health (2001).

R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 13 (2011) 10908.

A. Jalan, R. W. Ashcraft, R. H. West and W. H. Green, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 106 (2010) 211.

C. Giaginis and A. Tsantili‐Kakoulidou, J. Liq. Chromatogr. Relat. Technol. 31 (2007) 79.

K. Valkó, J. Chromatogr. A 1037 (2004) 299.

A. Tsantili-Kakoulidou, Encyclopedia of Chromatography, Second Edition, CRC Press, (2005) 993.

S. Balaz, Chem. Rev. 109 (2009) 1793.

J. Sangster, Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, Wiley (1997).

C. Giaginis and A. Tsantili-Kakoulidou, J. Pharm. Sci. 97 (2008) 2984.

S. Aurijit and E. K. Glen, Curr. Top. Med. Chem. 10 (2010) 67.

N. Bodor and P. Buchwald, Adv. Drug Deliv. Rev. 36 (1999) 229.

M. Michalík and V. Lukeš, Acta Chim. Slov. 9 (2016) 89.

C. J. Cramer and D. G. Truhlar, Chem. Rev. 99 (1999) 2161.

J. Tomasi and M. Persico, Chem. Rev. 94 (1994) 2027.

A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 113 (2009) 6378.

J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev. 105 (2005) 2999.

C. J. Cramer and D. G. Truhlar, Acc. Chem. Res. 41 (2008) 760.

K. S. A. M. Shweshein, F. Andric, A. Radoicic, M. Zlatar, M. Gruden-Pavlovc, Z. Tesic and D. Milojkovic-Opsenica, Scientific World J. 2014 (2014) 10.

M. Remko, M. Swart and F. M. Bickelhaupt, Bioorg. Med. Chem. 14 (2006) 1715.

C. C. R. Sutton, G. V. Franks and G. da Silva, J. Phys. Chem. B 116 (2012) 11999.

E. L. M. Miguel, P. L. Silva and J. R. Pliego, J. Phys. Chem. B 118 (2014) 5730.

M.-H. Baik and R. A. Friesner, J. Phys. Chem. A 106 (2002) 7407.

R. E. Skyner, J. L. McDonagh, C. R. Groom, T. van Mourik and J. B. O. Mitchell, Phys. Chem. Chem. Phys. 17 (2015) 6174.

M. Kolář, J. Fanfrlík, M. Lepšík, F. Forti, F. J. Luque and P. Hobza, J. Phys. Chem. B 117 (2013) 5950.

M. J. Frisch, G. W. Trucks and H. B. Schlegel, Gaussian 09, Revision D.02. (2016).

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101.

Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215.

P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28 (1973) 213.

R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 115 (2011) 14556.

Y. C. Martin, J. Med. Chem. 39 (1996) 1189.

J. Sangster, J. Phys. Chem. Ref. Data 18 (1989) 1111.

C. T. Garten and J. R. Trabalka, Environ. Sci. Technol. 17 (1983) 590.

B. T. Bowman and W. W. Sans, J. Environ. Sci. Health B 18 (1983) 667.

P. Pernot, B. Civalleri, D. Presti and A. Savin, J. Phys. Chem. A 119 (2015) 5288.

N. Bodor and P. Buchwald, Retrometabolic Drug Design and Targeting, Wiley (2012).

P. Keen, Concepts in Biochemical Pharmacology: Part 1, eds. B. B. Brodie, J. R. Gillette and H. S. Ackerman, Springer Berlin Heidelberg, Berlin, Heidelberg (1971) 213.

L. Shargel, A. Yu and S. Wu-Pong, Applied Biopharmaceutics & Pharmacokinetics, Sixth Edition, McGraw-Hill Education (2012).




DOI: http://dx.doi.org/10.2298/JSC170725104V

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)