Production of biosolvents and acids by salinity-adapted strain of Clostridium acetobutylicum: Effects of salt and molasses concentrations

Reza Zabihi, Dariush Mowla, Gholamreza Karimi

Abstract


In this study, growth of Clostridium acetobutylicum is evaluated in Clostridium basal medium (CBM) containing 0.001, 0.5, 1, 2 and 4 % salt concentrations. Although the strain was sensitive to salinity of more than 2 %, the adapted strain is shown to grow even at 6 % salinity. The results state adverse effects of salinity on bacterial growth and bioproducts such as butanol and butyric acid, whereas produced acetone is increased by salinity in CBM. In addition, glucose of CBM is substituted by sugar beet molasses, due to its lower price and higher accessibility. Therefore, molasses-based mediums (MBM) at different molasses concentrations are examined to assess the effect of molasses concentration on the adapted strain at low salinity. The results show that 4 and 6 % (w/v) molasses concentrations are optimum concentrations for bacterial growth and its bioproducts production at low salinity. Finally, the simultaneous effects of salinity and molasses concentration on the adapted strain are investigated. For this purpose, molasses-based mediums (MBM) containing 2, 3 and 4% (w/v) molasses concentration at 4 % salinity are considered. The results demonstrate that the increase in the molasses concentration raises the production of both butyric acid and acetone.  


Keywords


Clostridium acetobutylicum; adapted strain; salinity; sugar beet molasses; bioproducts

Full Text:

PDF (2,209 kB)

References


J. Zigova, E. SturdiK, E. Zigov J, Sturdik EK, J. Ind. Microbiol. Biotechnol. 24 (2000) 153

T. Lütke-Eversloh, H. Bahl, Curr. Opin. Biotechnol. 22 (2011) 634

M. M. K. Bagy, M. H. Abd-Alla, F. M. Morsy, E. A. Hassan, Int. J. Hydrogen Energy 39 (2014) 3185

N. Kaid, N. Al-shorgani, M. Hafez, M. Isa, W. Mohtar, W. Yusoff, M. Sahaid, A. Abdul, Renew. Energy 86 (2016) 459

E. A. Hassan, M. H. Abd-alla, M. Mohamed, K. Bagy, Anaerobe 34 (2015) 125

C. M. Cooksley, Y. Zhang, H. Wang, S. Redl, K. Winzer, N. P. Minton, Metab. Eng. 14 (2012) 630

D. T. Jones, A. Van der Westhuizen, S. Long, E. R. Allcock, S. J. Reid, D. R. Woods, Appl. Environ. Microbiol. 43 (1982) 1434

F. Heidari, M. A. Asadollahi, A. Jeihanipour, M. Kheyrandish, H. Rismani-Yazdi, K. Karimi, RSC Adv. 6 (2016) 9254

S. Sreekumar, Z. C. Baer, A. Pazhamalai, G. Gunbas, A. Grippo, H. W. Blanch, D. S. Clark, F. D. Toste, Nat. Protoc. 10 (2015) 528

Y. Ni, Z. Sun, Appl. Microbiol. Biotechnol. 83 (2009) 415

S. Rudyk, E. Søgaard, How specific microbial communities benefit the oil industry: microbial-enhanced oil recovery (MEOR), in Appl. Microbiol. Mol. Biol. Oilf. Syst., Springer, 2010, pp. 179

H. Alshiyab, M. S. Kalil, A. A. Hamid, Y. W. M. Wan, Pak. J. Biol. Sci. 11 (2008) 2193

N. Qureshi, B. C. Saha, R. E. Hector, M. A. Cotta, Biomass and Bioenergy 32 (2008) 1353

E. W. J. van Niel, P. A. M. Claassen, A. J. M. Stams, Biotechnol. Bioeng. 81 (2003) 255

X. J. Zheng, Y. M. Zheng, H. Q. Yu, Environ. Technol. 26 (2005) 1073

J. Cheng, Biomass to renewable energy processes, CRC press, Boca Raton, FL, 2009

M. R. Nićetin, L. L. Pezo, B. L. J. Lončar, V. S. Filipović, D. Z. Šuput, V. M. Knežević, J. S. Filipović, J. Serbian Chem. Soc. 82 (2017) 253

M. Wagner, D. Lungerhausen, H. Murtada, G. Rosenthal, Development and application of a new biotechnology of the molasses in-situ method; detailed evaluation for selected wells in the Romashkino carbonate reservoir, BDM Oklahoma, Inc., Bartlesville, OK, 1995

Persian Type Culture Collection, http://ptcc.irost.org/DBank-details.asp?id= =103&code=0 (2017)

ATCC, https://www.atcc.org (2017)

F. Monot, J.-R. Martin, H. Petitdemange, R. Gay, Appl. Environ. Microbiol. 44 (1982) 1318

X. Zhao, S. Condruz, J. Chen, M. Jolicoeur, Sci. Rep. 6 (2016) 28307

I. S. Maddox, N. Qureshi, K. Roberts-Thomson, Process Biochem. 30 (1995) 209

M. G. N. Hartmanis, T. Klason, S. Gatenbeck, Appl. Microbiol. Biotechnol. 20 (1984) 66

Y. Chen, J. J. Cheng, K. S. Creamer, Bioresour. Technol. 99 (2008) 4044

P. L. McCarty, R. E. McKinney, J. (Water Pollut. Control Fed. (1961) 399

H. A. O. Xiaolong, Z. Minghua, Y. U. Hanqing, S. Qinqin, L. Lei, Chinese J. Chem. Eng. 14 (2006) 511

D. Michel-Savin, R. Marchal, J. P. Vandecasteele, Appl. Microbiol. Biotechnol. 34 (1990) 172

G. N. Bennett, F. B. Rudolph, FEMS Microbiol. Rev. 17241-249 17 (1995) 241

L. Girbal, C. Croux, I. Vasconcelos, P. Soucaille, C. De Bioingdnierie, G. Durand, U. a Cnrs, C. S. De Rangueil, FEMS Microbiol. Rev. 17 (1995) 287.




DOI: http://dx.doi.org/10.2298/JSC170822013Z

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)