

J. Serb. Chem. Soc. 87 (10) S388-S394 (2022)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Nanocomposites made from thermoplastic linear poly(urethane-siloxane) and organoclay: Composition impact on the properties

MARIJA V. PERGAL^{1*}, SANJA OSTOJIĆ², MILOŠ STEINHART³, IVAN S. STEFANOVIĆ¹, LATO PEZO² and MILENA ŠPÍRKOVÁ³

¹University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia, ²Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia and ³Institute of Macromolecular Chemistry CAS (IMC), Heyrovsky Sq. 2, 16206 Prague 6, Czech Republic

J. Serb. Chem. Soc. 87 (10) (2022) 1203-1218

Preparation of TPU NCs

The TPU NCs were synthesized under the following polymerization conditions:¹⁰ the molar ratio of NCO/OH groups was 1.05/1.0, the amount of the catalyst was 0.15 mol.% Sn(Oct)₂/PDMS macrodiol, and a mixture of 1/1, V/V DMAc/THF was used. For the clay dispersion in DMAc/THF, intensive mixing with a magnetic stirrer (1000 rpm) for 10 h at room temperature and for 2 h at 50 °C, followed by sonication at 25 °C for 1 h were applied. During the first step, a predetermined amount of clay dispersion was added dropwise into the PDMS macrodiol solution of DMA_C/THF in a 100 mL flask equipped with a mechanical stirrer, an argon inlet, a dropping funnel and a reflux condenser. This reaction mixture was stirred for 1 h at room temperature under an argon atmosphere. Then MDI was added to the flask and catalyst Sn(Oct)₂ solution and the mixture reacted at 40 °C for 30 minutes under continuous stirring to give NCOterminated prepolymer. During the second step, a solution of BD in DMAc/THF (1/1, V/V) was charged into the prepolymer and the reaction mixture was stirred and kept at 50 °C for 10 h. Then, sonication (30 minutes, at 25 °C) was performed to get better dispersion of organoclay in final TPU NCs. Finally, the resultant dispersion was cast into Teflon moulds and then heated in an oven at 40 °C for 24 h. Solvent residue was evaporated by drying in a vacuum oven (66.7 Pa) at 60 °C for 24 h to constant mass. All TPU NC films were allowed to age at room temperature in desiccators for at least 2 weeks prior the characterization.

S388

^{*}Corresponding author. E-mail: marijav@chem.bg.ac.rs

SUPPLEMENTARY MATERIAL

Surface energy calculation

The surface free energy of TPU and TPU-NCs was calculated by:15

$$\gamma_{\rm LV}(1+\cos\theta) = 2\sqrt{\gamma_{\rm S}^{\rm LW}\gamma_{\rm LV}^{\rm LW}} + \sqrt{\gamma_{\rm S}^{+}\gamma_{\rm LV}^{-}} + \sqrt{\gamma_{\rm S}^{-}\gamma_{\rm LV}^{+}}$$
(S-1)

where θ is the contact angles of distilled water, formamide and diiodomethane on the surface of TPU NCs; $\gamma_{\rm S}$, $\gamma^{\rm LW}$, $\gamma^{\rm AB}$ represent the surface free energy, dispersion component and polar component, respectively; γ^+ and γ^- represent the Lewis acid parameter and the Lewis base parameter of the surface free energy, respectively; $\gamma_{\rm LV}$ is the surface tension of the test liquid. Values of surface tension for distilled water, formamide and diiodomethane needed to solve these equations are listed in previously published papers.¹⁻³ The total surface free energy, as well as its dispersive and polar components, could be determined by solving eq. S-1, because $\gamma_{\rm LV}^{\rm LW}$, $\gamma_{\rm LV}^+$ and $\gamma_{\rm LV}^-$ are all available.

Water absorption calculation

The weight percent of the water absorption was calculated by:

Water absorption =
$$\frac{w_{W} - w_{W_0}}{w_{W_0}}$$
100 (S-2)

where, w_w is the weight of the fully hydrated sample and w_{W0} is the weight of the dried sample.

Degree of phase separation calculation

The degree of phase separation (DPS) in TPU NCs can be calculated by using: 10,16

$$DPS = \frac{A_{bonded.tot}}{A_{tot}} = \frac{A_{1703} + A_{1715}}{A_{1703} + A_{1715} + A_{1733}}$$
(S-3)

PERGAL et al.

S390

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

Fig. S-3. SEM images of fractured surfaces of TPU NC films at magnification $\times 3000.$

Available on line at www.shd.org.rs/JSCS/

(CC) 2022 SCS.

S391

PERGAL et al.

Fig. S-4. (a) 2D height and (b) 2D phase AFM images of TPU NCs at $10\times10~\mu\text{m}^2.$

Fig. S-5. DSC curves of TPU NCs obtained during the second heating (a) and cooling (b) run.

ν/cm^{-1}	Band assignments
3310	stretching vibrations of hydrogen-bonded urethane N-H groups
2960	asymmetric stretching vibrations of CH ₂ groups
2900	symmetric stretching vibrations of CH ₂ groups
1735	stretching vibrations of free urethane C=O groups
1720	stretching vibrations of disordered urethane C=O groups
1705	stretching vibrations of hydrogen-bonded urethane C=O groups in hard domains
1590	C=C stretching vibrations in the aromatic rings
1530	amide II vibrations
1230	amide III vibrations
1105	stretching vibrations of C-O-C and Si-O-Si bands
1010	stretching vibrations of C-O-C and Si-O-Si bands
800	rocking vibration of C-H in SiCH ₃
523	bending vibration of Si–O–Al
461	rocking vibration of Si–O–Si

Table S-I. Band assignments in the FTIR spectra of TPU NCs

SUPPLEMENTARY MATERIAL

Table S-II. Deconvolution results of TPU NCs, determined from FTIR spectra

Matarial	Fraction, %						
Iviaterial	(C=O) _{free}	(C=O) _{HB-disordered}	(C=O) _{HB-ordered}	$\mathrm{NH}_{\mathrm{HB}}$	$\mathrm{NH}_{\mathrm{free}}$	DF 5, 70	
TPU-NC20	14.5	15.1	70.4	84.3	15.7	85.5	
TPU-NC35	13.2	10.6	76.2	88.9	11.1	86.8	
TPU-NC45	8.1	9.4	82.5	92.4	7.6	91.9	
TPU-NC50	6.9	9.1	84.0	94.5	5.5	93.1	
TPU-NC55	6.1	7.2	86.7	94.9	5.1	93.9	

Table S-III. Integral intensities of the three peaks into which the XRD data could be decomposed

Matarial	Integral	A morphous ratio 9/		
Waterial	Peak 1-12.22°	Peak 2-17.6°	Peak 3-21.9°	Amorphous ratio, 70
TPU-NC20	44.0	107.9	521.0	16
TPU-NC35	54.6	192.5	269.8	37
TPU-NC45	51.8	88.4	395.7	17
TPU-NC50	48.2	113.7	493.4	17
TPU-NC55	10.5	3.46	192.6	2

Table S-IV. Surface roughness	determined by A	AFM and water a	absorption va	lues of TI	PU NCs
	-				

М	aterial	Surface area, μm^2	R_q^*/nm	$R_{\rm a}^{**}$ / nm	$R_{\rm max}^{***}$ / nm	Water absorption, wt.%
TPU	U-NC20	100	14.4	10.8	105	$0.52{\pm}0.02$
TPU	J-NC35	101	47.1	35.8	340	$0.69{\pm}0.03$
TPU	J-NC45	106	56.6	42.8	505	$0.70{\pm}0.02$
TPU	J-NC50	113	255	210	1629	$0.97{\pm}0.02$
TPU	J-NC55	107	59.9	46.2	558	1.11 ± 0.03

Surface area: the total area of examined sample surface (the three-dimensioned area of a given region expressed as the sum of the area of all the triangles formed by three adjacent data points); R_q^* (rms): the standard deviation of the Z values for height images are nm and degrees for phase images within the given area; R_a^{**} (mean roughness): the mean value of the surface relative to the center place; R_{max}^{***} (max height): the difference in height between the highest and lowest points on the surface relative to the mean plane; mean: the average of all Z values within the enclosed area; Water absorption values are given with their standard deviations.

Table S-V. TGA and DSC results of the pr	repared TPU NCs
--	-----------------

			t /	°C	Residue yield		t / °C	$\Delta H_{\rm m}/$	$t_{\rm cHS}$ /	$\Delta H_{\rm c}/$	V / 0/
Material	$t_{5\%}$	<i>t</i> _{10%}	<i>t</i> _{50%}	$t_{\rm max}$	at 650 °C, %	t _{rel}	t _{mHS}	J g ⁻¹	°C	J g ⁻¹	$\Lambda_{\rm c}$ / /0
TPU-NC20	295	305	344	328/406/422	4.9	60	153	4.2	94	3.0	4.6
TPU-NC35	295	306	341	329/460	5.5	109	180	6.2	101	3.4	6.8
TPU-NC45	293	306	339	330/435	8.5	110	183	8.3	107	5.8	9.1
TPU-NC50	289	306	341	332/463	9.0	110	182	8.6	115	6.7	9.4
TPU-NC55	288	304	339	330/506	11.7	112	184/206	8.4	119	7.5	9.2

PERGAL et al.

Table S-VI.	Storage modulus	and phase	transitions	of TPU	NCs
-------------	-----------------	-----------	-------------	--------	-----

S394

Material	<i>G</i> ' at 25 °C / MPa	$t_{\rm gPDMS} t_{\rm an} \delta / ^{\circ}{\rm C}$	$t_2^{\tan\delta}/$ °C	$t_{ m HBD}^{ m tan\delta}$ / °C
TPU-NC20	67	-102	5	75
TPU-NC35	100	-104	1	82
TPU-NC45	180	-109	-3	97
TPU-NC50	340	-112	-5	112

Available on line at www.shd.org.rs/JSCS/

(CC) 2022 SCS.