

J. Serb. Chem. Soc. 88 (3) S71-S72 (2023)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Structure and properties of ZnO/ZnMn₂O₄ composite obtained by thermal decomposition of terephthalate precursor

LIDIJA RADOVANOVIĆ^{1*#}, ŽELJKO RADOVANOVIĆ^{1#}, BOJANA SIMOVIĆ^{2#}, MILICA V. VASIĆ³, BOJANA BALANČ¹, ALEKSANDRA DAPČEVIĆ^{4#}, MIROSLAV DRAMIĆANIN⁵ and JELENA ROGAN^{4#}

¹Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia, ²Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia, ³Institute for Testing of Materials IMS, University of Belgrade, Bulevar vojvode Mišića 43, Belgrade, Serbia, ⁴Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, Serbia and ⁵Vinča Institute of Nuclear Sciences, University of Belgrade, IP.O. Box 522, Belgrade, Serbia

J. Serb. Chem. Soc. 88 (3) (2023) 313-325

Fig. S-1. The asymmetric unit of [Mn(dipya)(H₂O)₄](tpht) phase (a) and the structural fragment of {[Zn(dipya)(tpht)]·H₂O}_n phase (b) in **I**.

^{*}Corresponding author. E-mail: lradovanovic@tmf.bg.ac.rs

RADOVANOVIĆ et al.

TABLE S-I. Selected bond lengths (Å) for [Mn(dipya)(H ₂ O) ₄](tpht) and	
$\{[Zn(dipya)(tpht)] \cdot H_2O\}_n$ phases in I	

Phase	Bond	Bond length, Å*
	Mn1–N1	2.217(14)
	Mn1–N2	2.356(18)
[Ma(diava)(II O)](tabt)	Mn1–O5	2.23(3)
	Mn1–O6	2.22(4)
	Mn1–O7	2.23(4)
	Mn1–O8	2.44(5)
	Zn1–N1	2.153(14)
	Zn1–N2	2.062(8)
${[Zn(dipya)(tpht)] \cdot H_2O}_n$	Zn1–O1	2.029(18)
	Zn1–O3	2.408(15)
	Zn1–O4	2.060(16)
¹²⁰ ၂		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



00 3500 3000 2500 2000 1500 1000 500 Wavenumber, cm⁻¹ Fig. S-2. FTIR spectrum of I.



Fig. S-3. Transparent (a–d) and pigmented (e–h) glaze at different magnifications:  $40 \times$  (a, e),  $100 \times$  (b, f),  $200 \times$  (c, g) and  $400 \times$  (d, h).

*1 Å = 0.1 nm