

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 88 (7-8) S165-S174 (2023)

SUPPLEMENTARY MATERIAL TO Synthesis and antiproliferative activity of (5*R*)-cleistenolide and analogues

SÁNDOR FARKAS¹, GORAN BENEDEKOVIĆ¹, SLAĐANA M. STANISAVLJEVIĆ¹, BOJANA M. SREĆO ZELENOVIĆ¹, MIRJANA POPSAVIN¹, VELIMIR POPSAVIN^{1,2*} and DIMITAR S. JAKIMOV³

¹University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, ²Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia and ³University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia

J. Serb. Chem. Soc. 88 (7–8) (2023) 705–713

SPECTROSCOPIC DATA OF MAIN COMPOUNDS

Methyl (2Z)-4,6,7-tri-O-benzyl-2,3-dideoxy-D-arabino-hept-2-enoate (4)

1

IR (film): v_{max} 3479, 1723, 1658, 1604, 1586, 1028 cm⁻¹.

¹H NMR (400 MHz, CDCl₃, δ): 7.24–7.39 (*m*, 15 H, 3 × Ph), 7.41 (*dd*, 1 H, $J_{2,3} = 11.8, J_{3,4} = 9.1$ Hz, H-3), 6.02 (*d*, 1 H, $J_{2,3} = 11.8$ Hz, H-2), 5.42 (*bd*, $J_{3,4} = 9.0$ Hz, H-4), 4.34–4.75 (*m*, 6 H, 3 × PhC*H*₂), 3.87 (*dd*, 1 H, $J_{7a,7b} = 12.1, J_{6,7b} = 4.9$ Hz, H-7b), 3.73 (*m*, 3 H, H-5, H-6 and H-7a), 3.69 (*s*, 3 H, CO₂C*H*₃), 2.1–2.5 (*bs*, 1 H, OH).

¹³C NMR (100 MHz, CDCl₃, δ): 166.15 (CO₂CH₃), 147.32 (C-3), 138.53, 138.25, 137.95, 128.38, 128.35, 128.25, 128.14, 127.93, 127.82, 127.69, 127.60, 127.50 (3 × Ph), 122.38 (C-2), 77.85 (C-6), 74.49 (C-5), 73.54 (C-4), 73.52, 72.43, 71.27 (3 × PhCH₂), 70.74 (C-7), 51.44 (CO₂CH₃).

(+)ESI-HRMS *m/z*: calculated for $[C_{29}H_{32}O_6 + K^+]$ 515.1830, observed 515.1822.

S165

Available on line at www.shd.org.rs/JSCS/

^{*}Corresponding author. E-mail: velimir.popsavin@dh.uns.ac.rs

4,6,7-Tri-O-benzyl-2,3-dideoxy-D-arabino-hept-2-eno-1,5-lactone (5)

IR (film): v_{max} 1731, 1629, 1605, 1497, 1066, 1028 cm⁻¹.

¹H NMR (250 MHz, CDCl₃, δ): 7.14–7.52 (*m*, 15 H, 3 × Ph), 6.99 (*dd*, 1 H, $J_{2,3} = 9.8, J_{3,4} = 5.7$ Hz, H-3), 6.20 (*d*, 1 H, $J_{2,3} = 9.8$ Hz, H-2), 4.46–4.86 (*m*, 7 H, H-5 and 3 × CH₂Ph), 4.28 (*dd*, 1 H, $J_{4,5} = 2.5, J_{3,4} = 5.6$ Hz, H-4), 4.18 (*ddd*, 1 H, $J_{6,7b} = 2.0, J_{6,7a} = 4.0, J_{5,6} = 9.6$ Hz, H-6), 3.96 (*dd*, 1 H, $J_{7a,7b} = 10.8, J_{6,7b} = 2.0$ Hz, H-7b), 3.82 (*dd*, 1 H, $J_{6,7a} = 3.9, J_{7a,7b} = 10.8$ Hz, H-7a).

¹³C NMR (62.5 MHz, CDCl₃, δ): 162.68 (C-1), 143.13 (C-3), 138.25, 138.17 137.69, 128.52, 128.42, 128.13, 128.05, 127.90, 127.75, 127.71, 127.66 (3 × Ph), 124.31 (C-2), 77.91 (C-5), 75.35 (C-6), 73.54, 72.36, 71.38 (3 × CH₂Ph), 67.92 (C-7), 65.46 (C-4).

(+)ESI-HRMS m/z: calculated for $[C_{28}H_{28}O_5 + K^+]$ 483.1568, observed 483.1564.

4,6,7-Tri-O-benzyl-2,3-dideoxy-D-lyxo-hept-2-eno-1,5-lactone (6)

IR (film): v_{max} 3020, 1731, 1497, 1101, 1027 cm⁻¹.

¹H NMR (400 MHz, CDCl₃, δ): 7.25–7.43 (*m*, 15 H, 3 × Ph), 6.85 (*dd*, 1 H, $J_{2,3} = 10.0, J_{3,4} = 2.2$ Hz, H-3), 5.99 (*dd*, 1 H, $J_{2,3} = 10.0, J_{2,4} = 1.8$ Hz, H-2), 4.34–4.84 (*m*, 8 H, 3 × CH₂Ph, H-4 and H-5), 4.01 (*td*, 1 H, $J_{6,7a} = 6.2, J_{6,7b} = 6.0, J_{5,6} = 1.9$ Hz, H-6), 3.88 (*dd*, 1 H, $J_{6,7b} = 5.8, J_{7a,7b} = 9.8$ Hz, H-7b), 3.84 (*dd*, 1 H, $J_{6,7a} = 6.4, J_{7a,7b} = 9.8$ Hz, H-7a).

¹³C NMR (100 MHz, CDCl₃, δ): 162.43 (C-1), 146.07 (C-3), 137.94, 137.78, 136.91, 128.51, 128.36, 128.31, 128.13, 127.94, 127.87, 127.78, 127.68, 127.63 (3 × Ph), 120.24 (C-2), 80.08 (C-5), 74.68 (C-6), 73.49, 72.64 and 71.6 (3 × CH₂Ph), 69.03 (C-7), 68.80 (C-4).

(+)ESI-HRMS m/z: calculated for $[C_{28}H_{28}O_5 + Na^+]$ 467.1834, observed 467.1827.

SUPPLEMENTARY MATERIAL

(5R)-Cleistenolide (2)

(5R)-Cleistenolide (2)

IR (film): v_{max} 1744, 1604, 1176 cm⁻¹.

¹H NMR (400 MHz, CDCl₃, δ): 7.40–8.05 (*m*, 5 H, Ph), 6.77 (*dd*, 1 H, $J_{2,3}$ = 10.0, $J_{3,4}$ = 2.7 Hz, H-3), 6.10 (*dd*, 1 H, $J_{2,4}$ = 1.9, $J_{2,3}$ = 10.0 Hz, H-2), 5.57 (*ddd*, 1 H, $J_{2,4}$ = 1.9, $J_{3,4}$ = 2.6, $J_{4,5}$ = 8.5 Hz, H-4), 5.50 (*ddd*, 1 H, $J_{5,6}$ = 2.2, $J_{6,7b}$ = 5.3, $J_{6,7a}$ = 7.3 Hz, H-6), 4.74 (*dd*, 1 H, $J_{5,6}$ = 2.2, $J_{4,5}$ = 8.5 Hz, H-5), 4.61 (*dd*, 1 H, $J_{6,7b}$ = 5.3, $J_{7a,7b}$ = 11.7 Hz, H-7b), 4.56 (*dd*, 1 H, $J_{6,7a}$ = 7.3, $J_{7a,7b}$ = 11.7 Hz, H-7b), 2.10 and 2.13 (2 × *s*, 3 H each, 2 × COC*H*₃).

¹³C NMR (100 MHz, CDCl₃, δ): 169.91 and 169.64 (2 × COCH₃), 165.83 (COPh), 160.89 (C-1), 144.09 (C-3), 133.25, 129.91, 129.31, 128.45 (Ph), 121.82 (C-2), 77.80 (C-5), 67.80 (C-6), 63.20 (C-4), 62.40 (C-7), 20.60 (2 × COCH₃).

(+)ESI-LRMS m/z: 363 [M + H⁺].

Combustion analysis for $C_{18}H_{18}O_8$: Calculated: C 59.67, H 5.01; found: C 59.49, H 4.89.

SAR ANALYSIS

(5R)-Cleistenolide (2)

8

(-)-Cleistenolide (1)

Fig. S-1. Structures of compounds used for SAR analysis

ŌBn

7

TABLE S-I. In vitro cytotoxicities used for SAR analysis.

Compounds	<i>IC</i> ₅₀ (µM)							
	K562	HL-60	Jurkat	Raji	MCF-7	MDA-MB 231	HeLa	A549
1	7.65	1.21	14.22	36.94	26.07	2.25	7.32	16.34
2	0.21	7.31	19.41	2.47	21.28	7.66	6.45	9.38
5	0.34	12.55	9.24	29.66	1.39	0.09	3.58	1.85
6	0.33	8.27	17.03	1.05	20.06	7.04	5.90	17.21

The structure-activity relationships were accessed as follows: the IC_{50} values of two compounds were compared, and the $\Delta \log IC_{50}$ was calculated ($\Delta \log IC_{50}$ is a difference between the log IC_{50} values of an analogue and the corresponding control compound). Positive $\Delta \log IC_{50}$ values show a decrease of

antiproliferative activity, whereas negative values indicate an increase in the activity upon the structural modification being considered. The results are presented in Fig. S2.

Fig. S-2. The effect of stereochemistry at the C-5 position on the cytotoxicity of stereoisomers.

SUPPLEMENTARY MATERIAL

NMR SPECTRA OF MAIN COMPOUNDS

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

400 MHz ¹H NMR Spectrum of compound 6 (CDCl₃)

GBK15L, CDCL3.10.3.17.

Available on line at www.shd.org.rs/JSCS/

(CC) 2023 SCS.

GBK3E,CDC13, 29.3.17.

(5R)-Cleistenolide (2)

TABLE S-II. Comparison of NMR data of final product 2 with published values (CDCl₃)

C/H	$\delta_{ m H} \left(J ight)$, Hz)	δ _C	
	This work	Ref. 1	This work	Ref. 1
1	_		160.9	160.9
2	6.10 dd (1.9, 10.0)	6.12 dd (1.7, 10.0)	121.8	121.9
3	6.77 dd (10.0, 2.7)	6.79 dd (10.0, 2.8)	144.1	144.1
4	5.57 ddd (1.9, 2.6,	5.59 dt (2.0, 2.0,	63.2	63.3
	8.5)	6.3)		
5	4.74 dd (2.2, 8.5)	4.75 dd (2.0, 8.5)	77.8	78.0

TABLE S-II.	Continued
-------------	-----------

S174

C/H	$\delta_{ m H} \left(J ight)$, Hz)	$\delta_{\rm C}$		
	This work	Ref. 1	This work	Ref. 1	
6	5.50 <i>ddd</i> (2.2, 5.3,	5.52 <i>ddd</i> (1.9, 5.3,	67.8	67.9	
0	7.3)	7.0)			
7a	4.56 <i>dd</i> (7.3, 11.7)	4.58 dd (7.3, 11.5)	62.4	62.4	
7b	4.61 <i>dd</i> (5.3, 11.7)	4.63 <i>dd</i> (5.3, 11.5)			
Мо	2.10 and 2.13 (2 \times	2.13 and 2.15 (2 \times	20.6	20.7	
MC	s)	<i>s</i>)			
MeCO		—	169.6 and 169.9	169.7 and 170.0	
Dh	7.40–8.05 m	7.46–8.01 <i>m</i>	128.4, 129.3, 129.9,	128.5, 129.4, 129.7,	
1 11			133.2	133.4	
PhCO			166.0	165.9	

REFERENCES

1. P. S. Mahajan, R. G. Gonnade, S. B. Mhaske, *Eur. J. Org. Chem.* **2014** (2014) 8049 (https://dx.doi.org/10.1002/ejoc.201403123).