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Abstract: The drugs that are most useful in all stages of Alzheimer’s disease 

(AD) are acetylcholinesterase (AChE) inhibitors. The objectives of this work are 

to generate various QSAR models and to select robust predictive models from 

corresponding models. Studies were then focused on finding a range of pyrazole-

like AChE inhibitors by 2D and 3D QSAR analysis. Genetic algorithm-based 

multiple linear regression (GA-MLR) provided the statistically robust 2D-QSAR 

model that depicted the significance of molecular volume and number of 

multiple bonds along with the presence/absence of specific atom-centred 

fragments and topological distance between 2D pharmacophoric features. 

Furthermore, these results were correlated well with the electrostatic and steric 

contour maps retrieved from the 3D-QSAR (i.e., alignment-dependent molecular 

field analysis). The 2D QSAR analysis developed a highly statistical and reliable 

model which was compared with the mechanistic interpretation of 3D structures 

and their electrostatic and steric field contributions leading to a predictive 3D 

QSAR model. The molecule-protein interactions elicited by molecular docking 

corroborated with the field interactions as revealed by 2D-QSAR. Thus, the 

developed computational models and simulation analyses in the current work 

provide valuable information for the future design of pyrazole and 

spiropyrazoline analogs as potent AChE inhibitors. 

Keywords: acetylcholinesterase; QSAR analysis; GA-MLR; contour maps; 

molecular docking. 

INTRODUCTION 

Alzheimer's disease (AD) was defined as a progressive neurodegenerative 

disorder, characterized by gradual loss of cholinergic neurons and accumulation of 

β-amyloid protein in the brain areas like cortex and hippocampus. AD is 
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manifested by successive impairment of activities of daily living, cognitive and 

memory deterioration, and a variety of neuropsychiatric symptoms and 

disturbances. Loss of memory, cognitive decline, impaired performance of 

activities of daily life, and behavioral changes are hallmarks of the disease. Every 

20 years the cases were estimated to double thus leading to a figure of over 120 

million affected from AD in Asia by 2050. World Health Organization (WHO) 

projects that by 2025, about 3/4th of the estimated 1.2 billion people age 60 years 

and older will reside in developing countries. Alzheimer’s disease onset starts with 

short-term memory impairment that gradually progresses to complete loss of 

cognitive function, weak performance of activities of daily life, and ultimately 

death. Research in this area will be beneficial to AD patients.1–3 

Alzheimer’s disease has no proper cure to date thus a molecule that provides 

symptomatic relief by inhibiting acetylcholinesterase (AChE) enzyme within the 

brain is studied. Almost 40 such inhibitors were collected from the literature survey 

and divided into a test set (20% of total compounds and a training set (80% of total 

compounds). Validated and predictive quantitative structure-activity relationship 

(QSAR) models were generated based on various feature selection methods. In 

addition, molecular docking 4 was also employed to reveal that the ionization state 

of the compounds had an impact on their interaction with AChE 2,4–7.  

EXPERIMENTAL 

A dataset containing forty pyrazole and spiro pyrazoline analogs with AChE inhibitors 

was collected from the report of Gutti et al7. For the development of the QSAR model, software 

such as ChemDraw ultra 8.0 April 23, 2003 (Chembridgesoft Corporation, 100 Cambridge Park 

Drive, Cambridge, MA 02140, USA), Discovery Studio Visualizer v21.1.0.20298, Marvin 

View tool (Marvin View. Version 18.18.0; ChemAxon: Budapest, Hungary, 2010), 

alvaDescv.2.0.4 under OCHEM web server,8,9 MLR plus Validation, Version 1.3 

(https://sites.google.com/site/mlrplusvalidation), DTC-QSARv1.0.610 and Open3DQSAR 

(http://www.softsea.com/review/Open3DQSAR.html).11 

Construction of chemical structures 

The SMILES notations of 40 compounds (Table I) were first converted to 2D structures 

by Marvin View tool (Marvin View. Version 18.18.0; ChemAxon: Budapest, Hungary, 2010, 

https://chemaxon.com/products/marvin), and these structures were subsequently saved as 3D 

structures (in .sdf file).  
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TABLE I. Library of compounds SMILES along with biological activity 7  

 
Comp

. 

no.  

SMILES R/R’ 
pIC₅₀ 

AChE 

43 O=C(Nc1cccc(-c2cc(-c3ccccc3)n[nH]2)c1)c1ccccc1 H 5.393 

44 O=C(Nc1cccc(-c2cc(-c3ccc(Cl)cc3)n[nH]2)c1)c1ccccc1 4-Cl 5.713 

45 O=C(Nc1cccc(-c2cc(-c3ccccc3Cl)n[nH]2)c1)c1ccccc1 2-Cl 5.517 

46 O=C(Nc1cccc(-c2cc(-c3ccc(Cl)cc3Cl)n[nH]2)c1)c1ccccc1 2,4-diCl 5.711 

47 O=C(Nc1cccc(-c2cc(-c3ccc(Br)cc3)n[nH]2)c1)c1ccccc1 4-Br 5.665 

48 O=C(Nc1cccc(-c2cc(-c3cccc(Br)c3)n[nH]2)c1)c1ccccc1 3-Br 5.521 

49 O=C(Nc1cccc(-c2cc(-c3ccc(F)cc3)n[nH]2)c1)c1ccccc1 4-F 5.68 

50 O=C(Nc1cccc(-c2cc(-c3cccc(F)c3)n[nH]2)c1)c1ccccc1 3-F 5.589 

51 COc1ccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)cc1 4-OMe 5.073 

52 COc1cccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)c1 3-OMe 5.06 

53 COc1ccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)cc1OC 3,4-diOMe 4.818 

54 O=C(Nc1cccc(-c2cc(-c3ccc(C(F)(F)F)cc3)n[nH]2)c1)c1ccccc1 4-CF3 5.627 

55 O=C(Nc1cccc(-c2cc(-c3cccc(C(F)(F)F)c3)n[nH]2)c1)c1ccccc1 3-CF3 5.495 

56 O=C(Nc1cccc(-c2cc(-c3ccc(OC(F)(F)F)cc3)n[nH]2)c1)c1ccccc1 4-OCF3 5.215 

57 N#Cc1ccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)cc1 4-CN 5.417 

58 N#Cc1cccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)c1 3-CN 5.405 

59 Cc1ccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)cc1 4-Me 4.828 

60 Cc1ccccc1-c1cc(-c2cccc(NC(=O)c3ccccc3)c2)[nH]n1 2-Me 4.771 

61 CC(C)c1ccc(-c2cc(-c3cccc(NC(=O)c4ccccc4)c3)[nH]n2)cc1 4-iPr 4.81 

62 O=C(Nc1cccc(-c2cc(-c3cccc4ccccc34)n[nH]2)c1)c1ccccc1 α-naphthyl 4.556 

66 O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccccc2)c1)c1ccccc1 H 5.705 

67 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(Cl)cc2)c1)c1cc

ccc1 
4-Cl 6.333 

68 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccccc2Cl)c1)c1cccc

c1 
2-Cl 5.706 

69 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(Cl)cc2Cl)c1)c1

ccccc1 
2,4-diCl 5.877 

70 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(Br)cc2)c1)c1cc

ccc1 
4-Br 5.943 

71 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2cccc(Br)c2)c1)c1cc

ccc1 
3-Br 5.752 

72 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(F)cc2)c1)c1ccc

cc1 
4-F 6.023 

73 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2cccc(F)c2)c1)c1ccc

cc1 
3-F 5.789 

74 
COc1ccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCCCC

3)cc1 
4-OMe 5.635 
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75 
COc1cccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCCC

C3)c1 
3-OMe 5.548 

76 
COc1ccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCCCC

3)cc1OC 
3,4-diOMe 5.521 

77 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(C(F)(F)F)cc2)c

1)c1ccccc1 
4-CF3 5.838 

78 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2cccc(C(F)(F)F)c2)c

1)c1ccccc1 
3-CF3 5.716 

79 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2ccc(OC(F)(F)F)cc2

)c1)c1ccccc1 
4-OCF3 5.65 

80 
N#Cc1ccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCCC

C3)cc1 
4-CN 5.75 

81 
N#Cc1cccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCC

CC3)c1 
3-CN 5.707 

82 
Cc1ccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCCCC3)

cc1 
4-Me 5.329 

83 
Cc1ccccc1C1C(C(=O)c2cccc(NC(=O)c3ccccc3)c2)=NNC12CCCC

C2 
2-Me 5.23 

84 
CC(C)c1ccc(C2C(C(=O)c3cccc(NC(=O)c4ccccc4)c3)=NNC23CCC

CC3)cc1 
4-iPr 5.146 

85 
O=C(Nc1cccc(C(=O)C2=NNC3(CCCCC3)C2c2cccc3ccccc23)c1)c

1ccccc1 
α-naphthyl 4.535 

 

Descriptors generation 

The 3D chemical structures of 40 AChE inhibitors were subjected to descriptors 

calculation using alvaDesc v.2.0.4 (https://www.alvascience.com/alvadesc/) under OCHEM 

web server. The 3D descriptors were calculated after geometrical optimization performed 

separately with Corina (molecular mechanical) and ULYSSES (quantum chemical PM67,12). 

The calculated descriptors for the dataset compounds were combined with their respective pIC₅₀ 

values  to generate a data-matrix for 2D-QSAR model generation. 

Model generation 

To initiate the model development procedure the data set (n=40) was divided into a training 

set (consisting of 80% of the total number of compounds) and a test set (20% of the total number 

of compounds) using a Java-based platform DTC-QSAR8,10,13–15 tool 

(https://dtclab.webs.com/software-tools) using random division technique with multiple 

random state values (i.e., by applying different seed values like 5, 10, 14, etc). Since the major 

objective of the current investigation is to generate interpretable 2D-QSAR models, we 

employed selected categories of alvaDesc descriptors and these belong to constitutional 

descriptors, functional group counts, 2D-atom pairs, drug-like indices, ring descriptors, atom-

centered fragments, pharmacophore descriptors, and molecular properties. The linear 

interpretable 2D-QSAR models were also generated using the DTC-QSAR tool, freely accessed 

from http://teqip.jdvu.ac.in/QSAR_Tools/. The Genetic Algorithm-Multiple Linear Regression 

(GA-MLR) method, implemented in DTC-QSAR-tool, was employed for regression-based 2D-

QSAR model generation. Data treatment was carried out by setting a variance cut-off of 0.001 

(to remove constant and near-constant descriptors) and a correlation cut-off of 0.99 (to eliminate 
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highly inter-correlated descriptors). During model development, a maximum of 5 descriptors 

were allowed. 

Model validation procedures 

Model validation was performed using both external and internal validation parameters 

which included Leave-One-Out (LOO) cross-validated determination coefficient (Q2
LOO) and 

predcited R2 (R2
pred) as well as related parameters which have been described in detail in 

supplementary information. 

3D-QSAR Modelling 

The 3D QSAR is used to explore the relationship between three-dimensional molecular 

structures and their measured biological activity. The 3D-QSAR depends mainly on the 

biologically active conformers of the ligands (compound 67) and their structural alignments.19 

The atom-based alignment or unsupervised rigid-body molecular alignment method16 was used 

for aligning the dataset compounds. The 3D structures of the ligands were first minimized using 

the OpenBabel ‘obminimize’ tool by the steepest descent method with a maximum of 10000 

runs. After minimization, the structures were eventually allowed to generate 100 conformations 

by superimpositions followed by alignment rdMolAlign.GetCrippenO3A program of Rdkit. 

The Python scripts used for atom-based alignment are provided in the GitHub repository. 

(https://github.com/rdkit/rdkit/blob/master/Code/GraphMol/MolAlign/Wrap/testMolAlign.py) 

Model Development 

Open 3D-QSAR16 is an open software used for model development. This open software 

calculates electrostatic fields by using a volume less positively (+1) charged probe of the query 

chemicals whereas steric fields were calculated using a sp3 carbon probe. The steric and 

electrostatic energies were considered independent CoMFA variables. Comparative Molecular 

Field Analysis (CoMFA) is an alignment-dependent and molecular field-based method used for 

developing a quantitative structural activity relationship with the response of steric and 

electrostatic fields. A generalized Smart Region Definition (SRD) cut-off of 2 was set by 

removing N-level variables. This SRD was based on the closeness of variables in 3D space. The 

Open3DQSAR uses two different variable selection algorithms, Uninformative Variable 

Elimination Partial Least Square (UVE-PLS) and Fractional Factorial design-based variable 

SELection (FFD-SEL). The contour maps were visualized with iso-contour values at PLS 

coefficients of +0.005 (green) and −0.005 (yellow) for the steric field and +0.003 (blue) and 

−0.003 (red) for the electrostatic field.  
The dataset was randomly divided into a training set (nTr = 33) and a test set (nTs=7) for 

3D-QSAR model generation. The 3D-QSAR-PLS models were generated for the best fit or 

active compound and low active compound. The statistical values generated from the 

compounds was examined using the R2/SDEC which is the coefficient R2 and its Standardized 

Errors of Calibration (SDEC), F -test results, Q2
LOO/SDEP (leave-one-out Q2

LOO), Q2
LTO/SDEP 

(leave-two-out Q2
LTO), Q2

LMO/SDEP (leave-many-out Q2
LMO) with associated Standardized 

Errors of Prediction (SDEP) values. However, R2
Pred values obtained from 3D-QSAR can be 

compared with a 2D-QSAR model to generate the predictivity of the model. In addition, the 

uniqueness of the model was justified by progressive scrambling methods, and the following 

criteria were followed: critical value: 0.80, type: LMO groups = 5, runs = 20, and scrambling = 

20. The robustness of the model is justified by Q2
LMO.  
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Molecular docking analyses 

The X-ray crystal structure of human AChE (PDB ID: 4EY7) 7 was retrieved from the 

Protein Data Bank (https://www.rcsb.org/). The protein structure was prepared by removing all 

water molecules and ligands. Subsequently, the hydrogen atoms were added. The partial atomic 

charges were assigned using the Gasteiger–Marsili method. Initially, a blind docking analysis 

was carried out using the Autodock Vina tool locating 17 the grid at the center of the 

macromolecule and extending the grid to cover the whole protein structure. After ensuring that 

the ligands can bind at the catalytic site of the enzyme, defined by the location-bound ligand 

donepezil, the Autodock 4.2 tool was employed for final docking.18 A grid size of 40 Å × 40 Å 

× 40 Å with a grid-point spacing of 0.375 Å was defined at X=-11.14, Y = -45.85, Z = 23.65. 

The 3D structures of the input ligands were protonated at pH 7.4 and were subsequently 

minimized using the OpenBabel ‘obminimize’ tool by the steepest descent method with a 

maximum of 10,000 runs. A genetic algorithm-based conformational search was carried out for 

the semi-rigid docking setting the maximum number of evaluations as 2,500,000. Other 

important genetic algorithm parameters employed for docking are as follows: (a) number of 

runs: 10, (b) population size: 150, (c) maximum number of generations: 27,000, (d) rate of gene 

mutation: 0.02, (e) rate of cross-over: 0.8. Default docking parameter settings found in 

Autodock 4.2 were used. Analysis of the 2D ligand protein interactions was conducted using 

the Discovery Studio Visualizer 2017 R2. 

RESULTS AND DISCUSSION 

Collection of Dataset and dataset preparation:  

The compounds of the dataset consisted of pyrazole derivatives7 (compounds 

43-62) and spiropyrazolines derivatives7 (compounds 66-85) (Table I). The GA-

MLR generates the most predictive 2D-QSAR model based on interpretable 

descriptors. A summary of the obtained statistical result of the model is presented 

in Equation 1 whereas the observed vs predicted activity plot of the model is 

depicted in Fig. 1.  

pIC₅₀=-0.275(±0.022) * nBM -0.416(±0.061) * C-001+13.255 (±1.579) * Mv + 

0.232(±0.061) * CATS2D_08_DL -0.325(±0.091) * C-014 +2.019(±0.827) (1) 

The model was based on five molecular descriptors, namely nBM, C-001, Mv, 

CATS2D_08_DL, and C-014. The descriptors belong to constitutional descriptors 

(nBM, Mv), atom-centered fragments (C-001, C-014), and pharmacophore 

descriptors (CATS2D_08_DL). We initially developed this GA-MLR model with 

the Corina (molecular mechanical) optimized structures. It is noteworthy that all 

these five descriptors are 2D in nature and therefore, the values of these are not 

dependent on the 3D structures of the compounds. Nevertheless, we calculated the 

alvaDesc descriptors after optimizing these structures with the semi-empirical 

method ULYSSES (quantum chemical PM6)7 but GA-MLR failed to develop any 

better model. The relative significance of these five descriptors was estimated 

based on the standardized coefficients that are presented in Fig. 1. The Mv has the 

maximum relative significance on the model. The value of Mv or mean atomic van 
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der Waals volume (scaled on carbon atom) depends on the formula provided 

below: 

 VvdW = ∑ all-atom contributions − 5.92NB − 14.7RA − 3.8RNA  (2) 

Where VvdW is the mean atomic van der Waals volume, NB is the number of 

bonds, RA is the number of aromatic rings, and RNA is the number of non-aromatic 

rings). The formula describes that the contribution of aromatic ring or RA decreases 

the van der Waals  volume as is observed in our QSAR results. The low active 

compound (compound 85) exhibits mean atomic van der Waals volume (scaled on 

carbon atom), Mv of 0.6567 due to the presence of a large aromatic group 

naphthalene. However, nBM is decisive in distinguishing the most active and the 

least active substances. The presence of polyaromatic rings like naphthalene is 

responsible for decreased Mv. However, as shown in Table II, the highly active 

compound (compound 67) exhibits a greater value of 0.6607 than that of 

compound 85. The structural features of both the compounds are elucidated in Fig. 

2. Compound 67 has an additional chlorophenyl group which is replaced by 

naphthalene in compound 85. Chlorophenyl contributes less to the VvdW value as 

compared to naphthalene. The least contributing descriptor also gets correlated to 

our results. Compound 67 has less nBM value than compound 85. Chlorophenyl 

has less number of multiple bonds (nBM value of 21 in compound 67) in 

comparison to a greater number of multiple bonds as in naphthalene (nBM value 

of 26 in compound 85). Furthermore, two atom-centered fragments C-001 and C-

014 (which refer to CH3R/CH4 and CX4, respectively) contributed unfavorably to 

the biological activity. Indeed, in some lower active compounds such as 59, 60, 

82, 83, and 84, the substitution of phenyl ring with methyl or isopropyl groups was 

found to be detrimental to the biological activity. Similarly, the substitution of 

benzene with trifluoromethyloxy group in compounds like 56 and 79 was also 

found to have a negative influence on the biological activity. Finally, 

CATS2D_08_DL stands for hydrogen bond donor and lipophilic features located 

at a topological distance of 8. Two (Mv, CATS2D_08_DL) out of five selected 

descriptors influence the predicted IC50 value positively as illustrated in Equation 

1. The CATS2D_08_DL is responsible for the increase in IC50 whereas nBM, C-

001, and C-014 are negatively correlated to the above equation.  
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Fig. 1. Observed vs. predicted biological activity plot (left) and relative significance of the 

descriptors of the most predictive 2D-QSAR model. 

Based on the pIC50 value, the highly active compound and the lowest active 

compound were selected for comparison with the molecular descriptor as depicted 

in Fig. 2. The highly active compound 67 with pIC₅₀ values of 6.333 is our best 

lead and the values of each descriptor are compared to the lowest active compound 

85 with pIC₅₀ values of 4.535. Maximum contributing descriptors in both high and 

low active compounds give no difference as observed in Table II. Similarly, the 

second major descriptor also plays no role in their activity. However, the third 

highest contributing factor Mv influences the IC50 value.  

Table II. Comparison of high and low active compounds 

Compound No. Observed pIC₅₀ Predicted pIC₅₀ Mv nBM 

67 6.333 5.923 0.6607 21 

85 4.535 4.492 0.6567 26 

 

Both the compounds have a structural resemblance with the marketed drug for 

Donepezil (as depicted in Fig. 2). Donepezil,19 is an N-benzyl piperidine derivative 

with Indanone (Site I), piperidine (Site II) and benzyl segments (Site III). All three 

segments of Donepezil interact with AChE in such an orientation that finds a 

pattern for all AChE interacting agents.20 
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Fig. 2. Structural correlation of three sites of compound 67 and compound 85 with Donepezil 

Model validation procedures: Leave-one-out method: 

Overall statistical quality of each model was justified by internal validation 

parameter Q2 and external validation parameter R2
Pred. The best model was 

generated with a random division-based training set and test set using seed value 

10.  

The GA-MLR generated the generated most predictive model based on 

interpretable descriptors. The best model was generated with 32 training sets and 

8 test set compounds. The results obtained for the training set (Table III) and test 

set (Table IV) are presented below. A good QSAR model is represented by a 

minimal coefficient of determination (R2), and an adjusted R2 (R2
A) of nearly one 

(obtained values are R2 = 0.906, R2
A = 0.888). The MAE (mean absolute error) was 

used to generate the goodness fit of the model (obtained values of (obtained values 

of MAE are 0.074). Thus the QSAR model can be said to be a good fit for the 

model. Internal cross-validation coefficient Q2
LOO was obtained when all the 

descriptors were used for model development and to check the robustness and 

internal predictivity. The Q2
LOO of 0.876 exhibits that the model is not over-fitted 

for the training set. A high Q² value that is Q2 > 0.5 is considered proof of the high 

predictive ability of the model (here, Q2 = 0.876, rm
2 = 0.825). 0.825). Furthermore, 

values of rm
2 are 0.825 and rm

2
 LOO is 0.042 are internal validation parameters and 

suggests that the training set is validated. 

Table III. Training set: Statistical results 

No.  R2 R2
adj Q2

LOO MAE  MSE Rm
2
Train ∆Rm

2
Train 

32 0.906 0.888 0.876 0.074 0.11 0.825 0.042 
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Maximum inter-correlation (Pearson r) between two descriptors: 0.766. 

Table IV: Test set: Statistical results 

No.  R2
Pred/Q

2
F1 Q2

F2 RMSEP Rm
2
Test ∆Rm

2
Test 

8 0.821 0.628 0.24 0.668 0.161 

 

The maximum inter-correlation (Pearson r) between two descriptors is 0.766 

which suggests that the descriptors of the regression model are devoid of high 

inter-co linearity and each descriptor of the model is thus unique.  

External Validation: Calculation of R²pred 

The R2pred was calculated by fitting the test set descriptors into the developed 

2D-QSAR model equation and thereafter comparing the predicted bioactivity of 

the compounds with their observed bioactivity. As far as the external validation is 

concerned, a satisfactory R2
Pred of 0.821. The value of R2

pred > 0.6 indicates a good 

external predictability of a model. The GA-MLR model yields a highly predictive 

QSAR model with a Q2
LOO value greater than 0.5 and an R²pred value greater than 

 0.6. The satisfactory internal and external predictivity of the model was 

demonstrated. Furthermore, the maximum inter-correlation (Pearson r) between 

two descriptors is 0.766 which suggests that the descriptors of each model are 

independent of each other. 

The applicability domain of the model 

The applicability domain of the model was found by availing the Williams 

plot (generated with one of our tools named SFS-QSAR-tools_v2, 

https://github.com/ncordeirfcup/SFS-QSAR-tool_v2) which is a plot drawn 

between standardized residuals in the y-axis and the leverage values in the x-axis. 

If the leverage value of any compound is more than the hat value (h*) which is 

calculated by the formula: h* = 3p’/n (where, p’ is several model descriptors +1, 

whereas n is several data in the training set), then the compound is assumed to be 

a structural outlier. However, if the standardized residuals are greater than ± 3.0 

then it is considered a response outlier.  

It is known that if the leverage value of any compound is more than the hat 

value (h*), here 0.55 then the compound is assumed to be a structural outlier. 

Similarly, if the standardized residuals (here greater than ± 3) then it is considered 

a response outlier. Two structural outliers (one training set and one test set) and 

one response outlier were found (Fig. 3). The relative significance of the 

descriptors could be described as most of the data remains within the standardized 

residuals.  
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Fig. 3. Applicability domain of the 2D-QSAR model  

3D QSAR: Alignment Method 

The Open3DQSAR model was generated by two methods namely, Fractional 

Factorial Design based variable SELection (FFD-SEL) and Uninformative 

Variable Elimination based Partial Least Square (UVE-PLS). The statistical results 

of both the FFD-SEL and UVE-PLS models are tabulated in Table V. The results 

of 3D QSAR analysis infer that the UVE-PLS model as compared to FFD-SEL is 

more helpful in drawing a successful conclusion. The UVE-PLS model exhibits a 

Q2
LOO (leave-one-out Q2

LOO) of 0.693 and an R2
Pred value of 0.692. The uniqueness 

of the model was suggested by  Q2
LMO  (leave-many-out Q2

LMO) values which 

happen to be 0.662. Thus, it can be concluded that the current 3D-QSAR model 

can explain the structural requirements of these dataset compounds.  

Table V. 3D-QSAR Statistical results in FFD-SEL and UVE-PLS 

Parameter FFD-SEL UVE-PLS 

Ntraining 33 33 

NC 4 4 

R2/SDEC 0.898/0.134 0.920/0.119 

F 61.41 80.23 

Q2
LOO/SDEP 0.718/0.222 0.693/0.232 

Q2
LTO/SDEP 0.711/0.225 0.687/0.234 

Q2
LMO/SDEP 0.679/0.237 0.662/0.243 

Ntest 7 7  

R2
Pred 0.658/0.184 0.692/0.175 
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The above results were also confirmed from alignment-dependent molecular 

field analysis which correlates with the results obtained from 2D-QSAR analysis.20 

The contour maps were visualized with iso-contour values at steric (green and 

yellow regions) and electrostatic field (blue and red regions) at PLS coefficients as 

depicted in Fig. 4. The electrostatic and steric fields of the two compounds (best 

active compound 67 and least active compound 85) were elucidated in Fig. 4. The 

steric contribution was 43% whereas the electrostatic contribution was 57%. Steric 

regions of the best active compound 67 contain a bulky chloro benzene moiety 

inserted into the steric favorable field (Fig. 4A). The bulky naphthalene group is 

found close to the steric unfavorable field which also confirms the results obtained 

from that of 2D QSAR analysis (Fig. 4C). The van der Waals volume of compound 

67 was 0.661 due to the presence of less number of aromatic groups as compared 

to compound 85 which consists of bulky poly aromatic naphthalene group. The 

steric effects of compound 67 mainly contribute to the model development. The 

steric favorable group was found near the positive field which happens to lead to 

greater biological activity. Fig. 4A and Fig. 4C depict that the side chain variation 

in the steric fields leads to a change in biological activity. The electrostatic 

contribution mainly contributes to the model development as compared to steric 

field contributions. The Electrostatic contribution of the best active compound 67 

elucidates that electron-deficient moiety is inserted into the electropositive field 

(Fig. 4B). The electron-rich naphthalene moiety is inserted in the electropositive 

field thus explaining the reason for the decreased biological activity of compound 

85 (Fig. 4D).  The naphthalene ring being highly electron-rich gets embedded into 

the electropositive field. The electron-rich moieties favor lower potency.  

To gain a more complete scientific significance, a molecular docking study 

should be performed on the AChE with two analyzed compounds (67 and 85). 

AChE was selected and downloaded from Protein Data Bank (www.rcsb.org, PDB 

ID: 4EY7). The two compounds were docked using AutoDock v4.2 (The Scripps 

Research Institute, La Jolla, California). The docking poses are shown in Fig. 5. 
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Fig. 4. Contour maps visualized with PLS coefficients (A) Steric regions of best active 

compound 67, (B) Electrostatic region of the best active compound 67, (C) Steric regions of 

least active compound 85 and (D) Electrostatic region of the least active compound 85 (Green: 

Steric favorable, Yellow: Steric unfavorable Blue: Electropositive favorable; Red: 

Electronegative favorable).  

 
Fig. 5. The docking poses of 67 (left) and 85 (right) 

First of all both 67 and 85 were docked at the same binding site though there 

is a large difference between their binding affinities. The best poses of compounds 

67 and 85 were found to have binding affinities of -5.64 and -0.62 kcal/mol, 

respectively. Both 2D- and 3D-QSAR analyses highlighted the importance of the 

chlorobenzene residue of 67 for higher activity as compared to the naphthalene 

moiety of 85. The 3D-QSAR highlighted that unfavorable steric and electrostatic 
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interactions with the naphthalene moiety of 85 are responsible for significantly low 

activity of 85. Now, from docking analyses, it is evident that similar to the 

chlorobenzene residue of 67, the naphthalene residue forms a pi-pi interaction with 

Phe338. However, the former is more effective as its chlorine is associated with 

pi-alkyl interactions with Phe295 and Phe297. Noticeably, the possibility of such 

interactions was highlighted in 3D-QSAR analyses. However, more interestingly, 

the docking analyses revealed that the pi-pi interactions between the naphthalene 

residue of 85 and Phe338 caused it to have an unfavorable interaction clash 

between 85 and Tyr124. Therefore, it may be inferred that the interpretations 

obtained from our 2D-QSAR and 3D-QSAR analyses are consistent with the 

docking results. 

CONCLUSION 

The current work investigates the structural requirements of a series of 

pyrazole and spiropyrazoline analogs for higher AChE inhibitory potential. We 

performed 2D-QSAR and 3D-QSAR analyses in a systematic manner to find out 

the most crucial structural attributes. The 2D-QSAR model was constructed with 

selected interpretable alvaDesc descriptors and the most predictive and evaluative 

GA-MLR model was developed with satisfactory statistical predictivity. The 2D-

QSAR model highlighted that molecular volume and number of multiple bonds 

along with presence/absence of specific atom centered fragments and topological 

distance between 2D pharmacophoric features determine the potency of these 

compounds against this enzyme.  The 3D-QSAR model, on the other hand, 

depicted the importance of specific electrostatic and steric contours regions which 

favorably or unfavorably influence the activity of the compounds. We compared 

the most potent (67, N-(3-(4-(4-chlorophenyl)-1,2-diazaspiro[4.5]dec-2-ene-3-

carbonyl)phenyl)benzamide) and the least potent (85) compounds of the dataset. 

In spite of having high structural similarity, their biological activities varied to a 

considerable extent. The 3D-QSAR model was able to explain this phenomenon 

by showing the importance of chlorophenyl moiety of 67 for higher activity as 

compared to naphthyl moiety of 85. More importantly, the inference was largely 

supported by the molecular docking methodology performed with these. The 

current work provides valuable information for future design of pyrazole and 

spiropyrazoline analogs as potent AChE inhibitors. 
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И З В О Д 
 

РАЗВОЈ 2D И 3D QSAR МОДЕЛА ПИРАЗОЛСКИХ ДЕРИВАТА КАО ИНХИБИТОРА 
АЦЕТИЛХОЛИН ЕСТЕРАЗЕ 

PUJA MISHRA1, SUMIT NANDI1, ANKIT CHATTERJEE1, TRIDIB NAYEK1, SOUVIK BASAK1, 

AMIT KUMAR HALDER1,2, ARUP MUKHERJEE3 

1Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India, 
2LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences,  

University of Porto, Porto, Portugal, 3Department of Biotechnology,  

Maulana Abul Kalam Azad University of Technology, WB, India 

Инхибитори ацетилхолинестеразе (AChE) су лекови који су најкориснији за лечење 
Алцхајмерове болести (AD) у свим стадијумима. Циљеви овог рада су генерисање 
различитих QSAR модела и одабир робусних предиктивних модела. Фокус даљег 
истраживања је на проналажењу низа AChE инхибитора сличних пиразолу помоћу 2D и 3D 
QSAR анализе. Вишеструка линеарна регресија заснована на генетском алгоритму (GA-
MLR) обезбедила је статистички робустан 2D QSAR модел који је приказао значај 
запремине молекула волумена и броја вишеструких веза заједно са присуством/одсуством 
специфичних фрагмената центрираних на атому и тополошке удаљености између 2D 
фармакофора. Штавише, ови резултати су били у доброј корелацији са електростатичким и 
стерним мапама контура преузетим из 3D QSAR (тј. анализа молекуларног поља зависна од 
поравнања). 2D QSAR анализа развила је високо статистички и поуздан модел који је 
упоређен са механичком интерпретацијом 3D структура и њиховим доприносима 
електростатичком и стеричном пољу што је довело до предиктивног 3D QSAR модела. 
Интеракције молекул-протеин изазване молекуларним спајањем поткрепиле су 
интеракције поља које је открио 2D QSAR. Дакле, развијени рачунарски модели и 
симулационе анализе у овом раду дају драгоцене информације за будући дизајн аналога 
пиразола и спиропиразолина као моћних инхибитора AChE. 

(Примљено 21. фебруара 2023; ревидирано 2. августа 2023; прихваћено 31. март 2024.) 
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