

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc.00(0) S1-S5 (2024)

SUPPLEMENTARY MATERIAL TO

Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors

PUJA MISHRA^{1*}, SUMIT NANDI¹, ANKIT CHATTERJEE¹, TRIDIB NAYEK¹, SOUVIK BASAK¹, AMIT KUMAR HALDER^{1,2}, ARUP MUKHERJEE³

¹Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India, ²LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal, and ³Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, WB, India

TEXT S1. MODEL VALIDATION PROCEDURES

Leave-one-out method

Leave-one-out (LOO), one of the popular cross-validation methods was implemented. The cross-validated R^2 is the result from cross-validation method which is used as a condition of robustness and predictive capability of the model. Cross-validated determination coefficient R^2 that is LOO-Q² is calculated using the following formula

 $Q^{2} = 1 - \sum (Y_{Obs} - Y_{pred})^{2} / \sum (Y_{Obs} - \bar{Y})^{2}$

In this equation, \overline{Y} denotes average activity value of the training set, Y_{obs} and Y_{pred} signify the values of observed and predicted activity respectively. A high Q² value (Q²>0.5) is considered as parameter of high predictive capability of the model.

External validation

Calculation of R^2_{pred} from test set

In this study, original dataset was divided into training set and test set. Based on training set compounds, 2D QSAR model (MLR equation) was developed. The predictive ability of the models was determined by statistical parameter like predictive R^2 (R^2_{pred}) values which was derived through the following equation

 $R^{2}_{pred} = 1 - \sum (Y_{pred(Test)} - Y_{Test})^{2} / \sum (Y_{Test} - \overline{Y}_{Training})^{2}$

In this equation, $Y_{pred (Test)}$ and $Y_{(Test)}$ represents predicted and observed activity values of certain test set of compounds, respectively, and \overline{Y} training denotes mean

^{*} Corresponding author. E-mail: pujam.phe15@itbhu.ac.in, Ph: +91-8340435004

activity value of the training set. The value of R^2 pred > 0.6 indicates a good external predictability of a model.

Here, multiple linear regression model generated from trainee set was used for the prediction purpose of bioactivity of test set compounds by forming an equation as

log Predicted activity (y) = $m_1x_1 + m_2x_2 + m_3x_3 + \dots + m_nx_n + C$

where m_1 , m_2 , m_3 , ---, m_n are respective coefficients of descriptors such as x_1 , x_2 , x_3 , ----, x_n

A well-known statistical method (metrics) was used to determine the goodness of the fit, robustness and internal predictivity of the final QSAR model. The coefficient of determination (R²), adjusted R² (R²_A) and the MAE (mean absolute error) were used to generate the goodness fit of the model and the internal cross validation coefficient Q² _{LOO} was used to check the robustness and internal predictivity. Further, metrics such as r_m^2 and r_m^2 _{LOO} are used as internal validation parameters. The external validation parameter R²_{Pred} is essential to judge the external predictivity of the molecule. The best QSAR model was validated by inter-correlation (Pearson r) between two descriptors. A correlation matrix was generated to check the correlation matrix of different descriptors.

TEXT S2. ENERGY OPTIMIZATION OF SELECTED MOLECULES

The results of Auto energy optimization of the compounds using Avogadro give values, such as 260.085 KJ/mol which is confirmed using Orca (semi empirical method). Structural optimization using both the softwares exhibits that there is no significant change in geometry after various geometry optimization cycle.

Fig. S1. Geometry optimization using Avogadro by using MM force fields.

S2

SUPPLEMENTARY MATERIAL

QM optimized structures (eventually with a semi-empirical method)

-0.0004823076	0.0000050000	(No significant
fter 24 geometry opti	imization cycle)	
0.0004785364	0.0001000000	
0.0034948286	0.0003000000	
0.0034607630	0.0020000000	
0.0320313071	0.0040000000	
	-0.0004823076 Fter 24 geometry opt 0.0004785364 0.0034948286 0.0034607630 0.0320313071	-0.00048230760.0000050000eter 24 geometry optimization cycle)0.00047853640.00010000000.00349482860.00030000000.00346076300.00200000000.03203130710.0040000000

Diagonalization of the overlap matrix:Smallest eigenvalue... 2.478e-04Time for diagonalization0.275 secThreshold for overlap eigenvalues1.000e-08Number of eigenvalues below threshold0Time for construction of square roots0.112 secTotal time needed0.395 sec

MISHRA	et al

Sr.	Experimental	Predicte	nB	C-		CATS2D_08_	C-
No.	pIC ₅₀	d pIC ₅₀	Μ	001	Mv	DL	014
43	5.393	5.713	24	0	0.6853	4	0
44	5.713	5.517	24	0	0.7045	4	0
46	5.711	5.665	24	0	0.7238	3	0
47	5.665	5.521	24	0	0.7091	4	0
49	5.68	5.68	24	0	0.6942	4	0
50	5.589	5.589	24	0	0.6942	4	0
54	5.627	5.073	24	0	0.6988	4	0
55	5.495	5.06	24	0	0.6988	4	0
56	5.215	5.627	24	0	0.6991	4	1
57	5.417	5.495	25	0	0.7037	4	0
58	5.405	5.215	25	0	0.7037	4	0
59	4.828	5.417	24		0.6738	4	0
60	4.771	5.405	24	1	0.6738	4	0
66	5.705	4.828	21	0	0.6469	4	0
67	6.333	4.81	21	0	0.6607	4	0
68	5.706	7.721	21	0	0.6607	3	0
69	5.877	5.705	21	0	0.6745	3	0
70	5.943	6.333	21	0	0.664	4	0
71	5.752	5.877	21	0	0.664	4	0
72	6.023	5.943	21	0	0.6533	4	0
73	5.789	5.752	21	0	0.6533	4	0
74	5.635	6.023	21	0	0.6415	4	0
75	5.548	5.789	21	0	0.6415	4	0
76	5.521	5.635	21	0	0.6367	4	0
77	5.838	5.548	21	0	0.6586	4	0
78	5.716	5.521	21	0	0.6586	4	0
79	5.65	5.716	21	0	0.6595	4	1
81	5.707	5.65	22	0	0.6608	4	0
82	5.329	5.75	21	1	0.6403	4	0
83	5.23	5.707	21	1	0.6403	4	0
84	5.146	5.23	21	2	0.6289	6	0
85	4.535	5.146	26	0	0.6567	4	0

SUPPLEMENTARY MATERIAL

Table SII.	Test set v	with chosen	n descriptors	(arranged in	descending	order of	pIC ₅₀ values
			1	$\langle 0 \rangle$	0		

	Experiment	Predicte			CATS2D_08_	
Sr. No.	al pIC ₅₀	d pIC ₅₀	C-001	Mv	DL	C-014
45	5.517	5.393	24	0	0.7045	-3
48	5.521	5.711	24	0	0.7091	4
51	5.073	4.818	24	0	0.6746	4
52	5.06	4.771	24	0	0.6746	4
53	4.818	4.556	24	0	0.6657	4
61	4.81	5.706	24	2	0.6547	6
62	4.556	5.838	29	0	0.6937	4
80	5.75	5.329	22	0	0.6608	4

Table SIII. Elaboration on chosen descriptors

Sr.No.	Descriptors	Class	Description
1.	nBM	constitutional descriptors	number of multiple bond
2.	C-001	atom centred fragments	CH ₃ R/CH ₄
3.	Mv	constitutional descriptors	mean atomic vander waals volume (scaled on carbon atom)
4.	CATS2D_08_DL	pharmacophore descriptors	CATS2D donor-lipophilic at lag 8
5.	C-014	atom centred fragments	CX_4
, e			