

J. Serb. Chem. Soc. 89 (2) S76-S86 (2024)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Anticancer acitivity of Schiff base ligand (*E*)-4-((5-chloro-2--hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1*H*-pyrazol--3(2*H*)-one and its Co(II), Cu(II) and Zn(II) metal complexes

KULDEEP B. SAKHARE, KIRTI N. SARWADE, YOGESH N. BHARATE and MAHADEO A. SAKHARE*

Department of Chemistry, Balbhim Arts, Science & Commerce College, Beed (MS) 431122, India

J. Serb. Chem. Soc. 89 (2) (2024) 165-175

TABLE I. Physical and ana	lytical data of ligand	l and its metal com	plexes: M.P.: meltir	ng point
TIDEE 1. Thysical and and	ry neur aata or ngane	and no moun com	prezes, with meren	ig point

		Colour	Yield (%)	Elemental analysis			
No.	Compound			$(^{\circ}C)$	Found % (Calcd.%)		
				(\mathbf{C})	С	Н	Ν
1.	L	Yellow	71	275	62.85(63.25)	4.92(4.72)	11.90(12.29)
2.	Mn(II) complex	Pink	68	>300	48.92(49.86)	4.50(4.98)	8.50(8.31)
3.	Co(II) complex	Brown	75	>300	48.85(49.47)	4.15(4.94)	8.65(8.24)
4.	Ni(II) complex	Light yellow	64	>300	48.75(49.50)	4.30(4.94)	7.95(8.25)
5.	Cu(II) complex	Green	72	>300	49.50(49.03)	4.80(4.90)	7.55(8.17)
6.	Zn(II) complex	Yellow	62	>300	48.03(48.85)	4.75(4.88)	7.58(8.14)
7.	VO(II) complex	Light brown	69	>300	48.10(48.72)	3.95(4.32)	8.96(9.47)

TABLE S-II. XRD	spectral	data of	f metal	complexes
-----------------	----------	---------	---------	-----------

Compounds	Mn(II)	Co(II)	Ni(II)	Cu(II)	Zn(II)	VO(II)
No. of reflections	12	10	19	25	29	23
Maxima(20)	49.56°	54.51 ⁰	32.130	72.00°	35.20°	60.19^{0}
Intensity	82.5 a.u.	100 a.u.	21.4 a.u.	14.2a.u.	59.6 a.u.	100a.u.
d value	9.762 Å	12.106 Å	18.560 Å	7.983Å	15.808 Å	7.470 Å
Lattice constant (Å)	a = 7.8130 b = 8.0580 c = 10.2120	a = 12.4230 b = 4.7220 c = 16.1100	a = 8.4047 b = 25.3897 c = 18.6676	a = 15.9658 b = 15.9658 c = 7.1487	a = 8.9034 b = 10.0168 c = 16.7090	a = 5.9645 b = 12.5730 c = 9.4371
Unit cell volume	590.695	920.888	2952.077	1578.117	1281.614	696.431
Axis and	$a \neq b \neq c \text{ and }$	$a\neq b\neq c$	$a \neq b \neq c \text{ and }$	$\mathbf{a} = \mathbf{b} \neq \mathbf{c}$	$a \neq b \neq c$	$a \neq b \neq c$
axis angle	$\alpha\neq\beta\neq\gamma$	and $\alpha = \gamma$	$\alpha = \gamma = 90^{\circ}$	and $\alpha = \beta =$	and $\alpha \neq \beta$	and $\alpha = \gamma =$

*Corresponding author. E-mail: kuldeep.org.chem@gmail.com

Fig. S-1. The mass spectrum of Schiff base ligand was expected to show the peak at 342 and in spectrum it showed 342 and 343(M+1).

S78

FTIR SPECTRUM OF SCHIFF BASE LIGAND

Poge 1/1

Fig. S-3. FTIR Spectrum of Schiff base ligand shows bands at 1639cm⁻¹.

FTIR SPECTRUM OF METAL COMPLEXES

Wavenumber in cm⁻¹

Fig. S-4. The FTIR spectrum of metal complexes decreased by 30-35cm⁻¹ it is primary suggestion that metal complexes may be formed.

SAKHARE et al.

ELECTRONIC SPECTRA

Fig. S-5. The electronic spectra of Schiff base and metal complexes is represented as above.

TGA-DTA OF METAL COMPLEXES

Fig. S-6. The TGA-DTA shows the formation of metal oxide which give the confirmation regarding the formation of metal complexes by loss of coordinated molecules.

SAKHARE et al.

POWDER XRD

Fig. S-7. The powder XRD gives the information regarding the crystal systems of metal complexes.

ANTIBACTERIAL ACTIVITY

14 acillus subtilis lebsiella pneumoniae as aerugin 12 Inhibition Zone in mm 10 8 4 0 Mn(II) Ni(II) Cu(II) Zn(II) VO(II) Ligand Co(II) Metal Complexes

Fig. S-8. The antibacterial activity of Schiff base ligand and metal complexes shows that metal complexes are more active than that of ligand.

ANTIFUNGAL ACTIVITY

Fig. S-9. The antifungal activity of Schiff base ligand and metal complexes shows that metal complexes are more active than that of ligand.

SAKHARE et al.

ANTICANCER ACTIVITY

Fig. S-10. The Anticancer Activity of Schiff base ligand and metal complexes shows that metal complexes are more active than that of ligand.

S84

PHOTOGRAPHS OF BIOLOGICAL ACTIVITY

SAKHARE et al.

Fig S-11. These photograph shows the biological activities of Schiff base ligand and metal complexes.

Available online at: http://www.shd.org.rs/JSCS

S86