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Abstract: The Lanasyn Black is among the most often used in manufacturing and 

is challenging to take out during wastewater treatment was acquired in the textile 

industry. Cloud point extraction was used for their elimination in an aqueous 

solution. The multivariable process parameters have been independently 

optimized using central composite design and Levenberg-Marquardt algorithm-

based artificial neural network for the highest yield of the extraction of Lanasyn 

Black via cloud point extraction. The CCD forecasts the output maximum of 

97.01% under slightly altered process parameters. Still, the ANN-LMA model 

predicts the extraction yield (99.98%) using an amount of KNO3 =1.04 g, 

beginning pH of solution=8.99, initial of Lanasyn Black 24.57 ppm, and 0.34 

W/W of Triton X-100. With coefficients of determination of 0.997 and 0.9777, 

the most recent empirical verification of the model mentioned above's 

predictions using CCD and ANN-LMA is determined to be satisfactory. 

Keywords: dyes; wastewater; extraction; optimisation; surface methodology; 

neural models; environment. 

INTRODUCTION 

Pollutant levels in wastewater from textile manufacturers are typically high. 

They include up to 1 g/L of the particles and significant levels of organic 

contaminants in soluble and colloidal forms. In any case, their colour intensity as 

a function of dilution is one of the most distinctive indicators of textile industry 

effluent pollution.1-4 The colour of wastewater is largely attributable owing to the 

widespread use of organic dyes in the textile industry. During manufacturing, dyes 

are applied to fibers, textiles, and final goods, depending on the business's 

expertise. Between 10% and 50% of the pigments used throughout the dying 
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procedure are still present in the technical waste solutions and cleaning water that 

is produced after cleaing the dyed articles.5 Because of this, the intensity of color 

in wastewater from textile businesses that use dyes during the production cycle 

might approach 1: 1000. The amount of coloring and the level of dilution in the 

home and industrial wastewater discharged simultaneously. Using green and 

sustainable technology necessitates the use of alternative processes that utilise 

fewer organic solvents.7 

Until now, numerous methods for removing dyes from aqueous solutions, 

industrial detritus, and polluted water have been reported, including the following: 

adsorption, electrochemical process, flocculation, membrane filtration, chemical 

oxidation and biodegradation.8–10 

Over the past ten years, Cloud point extraction (CPE) is an effective extraction 

method and has continuously developed.11,12 CPE has several advantages over 

conventional pre-treatment methods, including ease of use, increased efficiency, 

safety, and environmental friendliness.13 To obtain phase separation from the 

extraction solution, the solubilization of the surfactant and cloud point phenomena 

are utilised primarily.14 Typically, the hydrophilic phase of a surfactant expands in 

water to produce a long, flexible vermiform micelle. As a result, a tiny volume of 

the surfactant-rich phase might contain a large amount of the analytes that interact 

with micellar systems. The analytes move to the inside of the micelles and become 

securely attached to the hydrophobic groups once the concentration of the 

surfactant exceeds the micelles' critical point, micelles will form.15-16 In contrast to 

the most traditional non-ionic surfactants, Triton X-100 (T100) is a non-ionic 

surfactant with a distinct structure of the hydrophobic component T100, 

specifically, features an alkyl-aryl (octyl-phenyl) group as its hydrophobic 

component instead of an aliphatic tail. It is widely employed in the field of 

biochemical research as well as in some pharmaceutical formulations and 

biological system applications.17 

"Clariant" of Switzerland manufactures the anionic azo dye "Lanasyn Black 

M-DL," also known as "Lanasyn Black." The dye is one of the most frequently 

used in manufacturing and is difficult to eliminate during effluent treatment.5 

Our work's objective focuses on removing Lanasyn Black by cloud point 

extraction using non-ionic extractant Triton X-100 and using ionic liquid Aliquat 

336. A salting-out technique was implemented, which permits the phase separation 

of surfactants with high cloud points, including TX-100, at room temperature. 

When combining a nonionic salt with an inorganic salt (KNO3), the cloud point of 

a surfactant solution decreases as the salt concentration increases. The reason for 

this is because the water molecules surrounding the nonionic surfactant exhibit a 

higher degree of orientation towards the salt anions (such as NO3
-) even under 

normal room temperature conditions.18 The influence of function variables was 

studied using a Central composite design and artificial neural network based on 
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Levenberg-Marquardt algorithm. The optimal conditions of the extraction of our 

dye were determined. 

MATERIALS AND METHODS 

Materials 

Complex Textile (Soitex) in Tlemcen, Algeria sells Black Lanasyn (C38H32CrN8O10S2). 

Triton X-100 is a non-ionic surfactant with an HLB value of 13.5 and a critical micelle 

concentration (CMC) of 3.0 10-4 M at 25 °C, was employed in this investigation. The KNO3 

99% came from Merck, used to decrease the point cloud temperature to room temperature. 

Aldrich is the source of Aliquat 336 (tri-capryl-methyl-ammonium chloride 

CH3N[(CH2)7CH3]3Cl). Sigma-Aldrich manufactures sodium hydroxide (NaOH) and 

hydrochloric acid (HCl). Chemopharma provides the ethanol 96% (C2H6O) needed. To make 

our solutions, we used distilled water. 

Batch extraction experiments  

Every alteration done throughout this work is based on the Triton X-100 and added mass 

of KNO3 cloud point extraction of the organic contaminant Black Lanasyn (LN). At room 

temperature and in graduated tubes, from 1.5 to 4 % of Triton X100 was added to Na2SO4 from 

0.5 to 1 g, added to 1mL of Aliquat 336 at 0.3 M dissolved in 5 mL of the mother solution of 

LN from 10 to 20 ppm and then supplemented up to 10 mL with the same solution. The 

solution's pH ranged from 2.4 to 6.82. The solutions are left to stand for 30 min. Then, 

centrifuged at 2000 rpm for 10 min, and UV-VISIBLE measures the diluted phase at absorption 

band λmax = 570 nm. The various procedures taken throughout the Black Lanasyn (LN) organic 

pollutant extraction using cloud point are shown in Fig.1. 

 
Fig. 1. Schema of the CPE of Lanasyn Black. 

Black Lanasyn solutions' UV-Vis absorbance was measured using an SP-UV 200S UV–

Visible spectrophotometer. Adwa pH Metre was used to measure pH. The LN removal efficacy 

(%) was calculated by :19,20 

 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 (%) =  
𝐶𝑖−𝐶𝑒

𝐶𝑖
 × 100  (1) 

where Ci is the initial concentration and Ce is the equilibrium concentration of LN.  
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Fig. 2. Chemical structure of the anionic Lanasyn Black dye. 

Central composite design 

The Central composite design (CCD) is the most frequently employed among all 

multivariate methods. CCD determines how each component affects how the other factors 

interact. With the least amount of time and effort, this method establishes the system's ideal 

circumstances. This approach focuses on achieving several specific objectives, the most crucial 

of which is to enhance the process by identifying the best input.21 

In this work, CCD was successfully employed to examine the impact of various variables 

on the effectiveness of Lanasyn Black's extraction by cloud point extraction. Four distinct 

factors' experimental ranges and levels were selected. Table I lists the mass of KNO3 (X1), 

Triton X-100 (X2), initial pH of the solution (X3), and initial dye concentration (X4). The 

following equation was used to calculate the results of 31 experimental runs. The following 

Equation was used to code the factors:22-24 

 𝑥𝑖 =  
𝑋𝑖− 𝑋0

∆𝑋
  (2) 

Where xi, Xi, X0, and ΔX are the coded values of the factors, their corresponding real 

values, the centre point of the real independent variable, and the step between the real variables, 

respectively.  

The multi-regression polynomial (Eq. 3) can be used to represent mathematical 

representation of connected the independent factor with the outcome :25-27 

 𝑦 (%) =  𝐴0 +  ∑ 𝐴𝑖
𝑘
𝑖=1 𝑋𝑖 + ∑ 𝐴𝑖𝑖

𝑘
𝑖=1  𝑋𝑖

2 +  ∑  𝑖=1 ∑ 𝐴𝑖𝑗𝑋𝑖𝑋𝑗 + 𝜀 
𝑗=𝑖+1  (3) 

As far as they are concerned, A0 denotes the expected response, Ai, Aii, Aij represents the 

constant coefficient, and Xi, Xj represents the input components in coded values. Finally, it 

means the overall error. Statistical software Design Expert 13 created the response surface, 

contour plots, and statistical data analysis. 
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TABLE I: Summary of CCD Design 

level 

Experimental factors with their units 

Mass of KNO3 

(X1) 

Triton X-100 

(X2) 

pH of the 

solution (X3) 

Initial dye 

concentration (X4) 

-2 0.25 0.025 0.19 5 

-1 0.5 0.15 2.4 10 

0 0.75 0.275 4.61 15 

1 1 0.4 6.82 20 

2 1.25 0.525 9.03 25 

Artificial neural network – Levenberg-Marquardt algorithm (ANN-LMA) 

Artificial neural network simulation is a mathematical instrument. It predicts the linear and 

nonlinear relationships between multiple inputs and outputs in a complex process. Individually, 

ANN and CCD can be used to optimise the non-linear process parameters of our dye extraction; 

however, they are highly interdependent on the input parameters. Due to the presence of beams 

of highly corresponding elements known as neurons, ANN is regarded as more accurate than 

CCD.28-30 Input, hidden, and output layers are the distinct divisions of multiple neurons that 

comprise the ANN model. Hidden layers, which can have a single or multiple architectures, are 

the operating units that function as character detectors and introduce nonlinearity into the 

network. The development of an ANN model is contingent upon multiple phases.31-33 The phase 

of learning and the phase of validation. Using previously presented CCD data and the 

Levenberg-Marquardt feedback algorithm, an ANN model was developed and trained. 

However, the data points were generated using the second-order polynomial equation of Central 

composite design. Fig. 3 shows the simple structure of the current ANN-LMA: 

 
Fig. 3. Proposed modeling by ANN-GA. 

As error functions, we used the mean absolute error (MAE), the mean square error (MSE), 

the root mean squared error (RMSE), and the absolute average deviation (AAD) to evaluate the 

performance of the ANN model in predicting the dependent variable. It is determined using the 

following equations:28 

 𝑀𝐴𝐸 =  (
1

𝑛
) ∑ |𝐸𝑚𝑜𝑑𝑒𝑙 − 𝐸𝑒𝑥𝑝|𝑛

𝑖=1  (4) 

 𝑀𝑆𝐸 =  
∑  𝑛

𝑖=1  (𝐸𝑚𝑜𝑑𝑒𝑙 − 𝐸𝑒𝑥𝑝)
2

𝑛
 (5) 
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 ADD (%) =  100. (
1

n
) (∑

|Emodel− Eexp|

Eexp

n
i=1 ) (6) 

 𝑅𝑀𝑆𝐸 =  √∑ (𝐸𝑚𝑜𝑑𝑒𝑙− 𝐸𝑒𝑥𝑝)
2𝑛

𝑖=1

𝑛
  (7) 

RESULT AND DISCUSSION 

Statistical results 

According to the combinations selected using central composite modeling, the 

experimental matrix shown in Table II comprises 31 experiments. Using this 

approach, we identified the four elements that were evaluated that were the most 

critical parameters and the synergic interactions. 

The five-level matrix generated by CCD and ANN-LMA with the responses 

obtained experimentally for the extraction of our dye is shown in Table II. It is 

clear from the table the extraction yield was obtained around the center of all 

parameters. The anion of Lanasyn Black, negatively charged, reacts in the 

coacervate phase, Triton X-100 and the ammonium cation of Aliquat 336 form 

mixte micelles as shown in Fig 4.34 

On the basis of these findings, the empirical relationships between the 

response of CCD and selected variables have been determined:  

Extraction yield (%) = 97,511 - 0,200 Mass of KNO3 + 1,403 Triton X-100 

+ 0,766 pH + 0,300 [LN] - 2,618 Mass of KNO3 * Mass of KNO3 - 4,205 Triton 

X-100 * Triton X-100 - 1,330 pH*pH - 2,137 [LN]* [LN]- 0,261 Mass of KNO3 * 

Triton X-100 - 1,628 Mass of KNO3 *pH - 1,162 Mass of KNO3 *[LN] 

+ 1,966 Triton X-100 *pH + 0,382 Triton X-100 *[LN] + 2,357 pH*[LN]. 

 
Fig. 4. Lanasyn Black dye extraction using combined Triton X-100/Aliquat 336 micelles. 
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TABLE II: Experimental matrix of experimental data, CCD and ANN-LMA for the extraction 

of Lanasyn Black 

Run 

order 

Mass of 

KNO3 

(%) 

Triton 

X-100 

(W/W) 

pH 

Lanasyn 

Black 

(ppm) 

Extraction 

yield (%) 

Predicted 

value by 

CCD (%) 

Predicted 

value by 

ANN (%) 

1 -1 -1 -1 -1 88.98 86.6054 88.8945302 

2 -1 1 1 -1 90.22 89.2438 90.2931885 

3 1 1 -1 1 83.24 84.2225 84.1005084 

4 1 1 -1 -1 91.00 89.8971 91.2489692 

5 1 -1 1 1 83.60 84.1642 84.4159927 

6 1 -1 -1 -1 89.83 92.3075 90.6289325 

7 1 -1 1 -1 82.44 81.9387 83.89133 

8 0 0 0 0 96.78 97.5114 97.7391311 

9 2 0 0 0 88.26 86.6404 89.4786037 

10 0 0 0 0 98.02 97.5114 97.7391311 

11 -1 -1 1 -1 82.59 82.7492 83.2669267 

12 -1 1 -1 -1 84.66 85.2375 83.0878711 

13 -1 -1 -1 1 82.30 84.0508 84.4210992 

14 0 0 2 0 93.15 93.7221 93.9104141 

15 1 -1 -1 1 84.91 85.1054 86.2595135 

16 -2 0 0 0 86.18 87.4388 87.6001534 

17 0 0 0 0 98.00 97.5114 97.7391311 

18 0 0 -2 0 91.59 90.6571 91.4822843 

19 0 0 0 0 97.00 97.5114 97.7391311 

20 0 2 0 0 82.74 83.4954 83.0456114 

21 -1 1 -1 1 84.49 84.2104 84.5912063 

22 0 0 0 2 91.28 89.5638 91.6904094 

23 -1 -1 1 1 89.30 89.6221 88.7290656 

24 1 1 1 1 89.55 91.1438 91.1766252 

25 0 0 0 0 98.02 97.5114 97.7391311 

26 -1 1 1 1 98.98 97.6442 98.3143374 

27 0 -2 0 0 79.00 77.8838 79.963546 

28 1 1 1 -1 88.00 87.3908 90.3381571 

29 0 0 0 0 97.76 97.5114 97.7391311 

30 0 0 0 0 97.00 97.5114 97.7391311 

31 0 0 0 -2 87.01 88.3654 89.8871532 

 

To find the significant main and interaction effects of dye extraction 

parameters, an ANOVA (Table III) was performed. 
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TABLE III: ANOVA for CCD-Quadratic model 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value  

Model 706.27 14 50.45 16.50 < 0.0001 Significant 

A-Mass of 

KNO3 
0.9560 1 0.9560 0.3128 0.5863  

B-Triton X-100 47.24 1 47.24 15.45 0.0020  

C-pH 14.09 1 14.09 4.61 0.0529  

D-[Lanasyn 

Black] 
2.15 1 2.15 0.7047 0.4176  

AB 1.09 1 1.09 0.3555 0.5621  

AC 42.41 1 42.41 13.88 0.0029  

AD 21.60 1 21.60 7.07 0.0209  

BC 61.82 1 61.82 20.22 0.0007  

BD 2.33 1 2.33 0.7633 0.3994  

CD 88.88 1 88.88 29.08 0.0002  

A² 146.45 1 146.45 47.91 < 0.0001  

B² 377.68 1 377.68 123.56 < 0.0001  

C² 37.88 1 37.88 12.39 0.0042  

D² 97.59 1 97.59 31.93 0.0001  

Residual 36.68 12 3.06    

Lack of Fit 35.83 10 3.58 8.38 0.1113 
Not 

significant 

Pure Error 0.8552 2 0.4276    

Cor Total 742.95 26     

Model   
Adeq 

Precision 

15.1637 

R2 

95.06 

% 

R2 

(adjust) 

89.30 % 

R2 

(predicted) 

71.97 % 

 

The Model F-value of 16.50 to Fcritic (0.05.14.12) = 2.65 indicates that the 

model is statistically significant. There is only a 0.01% possibility that this large 

cloud's F-value is caused by noise. P-values less than 0.05 indicate significant 

model terms. In this particular instance, Triton X-100. Mass of KNO3*pH. Mass 

of KNO3*[Lanasyn Black]. Triton X-100*pH. pH*[Lanasyn Black]. Mass of 

KNO3². Triton X-100². pH². [Lanasyn Black]² are significant model terms. Values 

exceeding 0.1000 indicate that the model terms are not statistically significant. The 

Lack of Fit F-value of 8.38 indicates that the Lack of Fit is not statistically 

significant in comparison to the pure error (0.05, 10.2) = 19.4. Due to noise, there 

is an 11.13 percent probability that a Lack of Fit F-value will occur in this large 

cloud. The Predicted R2 of 0.7197 corresponds reasonably well to the Adjusted R2 

of 0.8930; i.e., the difference is less than 0.2. AdeqPrecision measures the signal-to-

noise ratio. Our ratio of 15.164 indicates a sufficient signal. This model can be 

utilised to navigate the design space. 
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Contour plots and response surfaces 

Fig. 5 is a graphical representation of the correlations between significant, 

optimal values and specific output variability by the contour plots and response 

surface. By possible point extraction, these images aid in understanding and 

describing the combined impact of the two variables on Lanasyn black extraction.35 

Depending on the contour plot's morphologies, the interaction's significance may 

be high if the contour plot is elliptical and saddle-shaped, but low if it depicts a 

circular shape. The maximum response value under the influence of the operational 

inputs was effectively determined by keeping the remaining pair of factors at their 

midpoint at the same time.36 

The elliptical contour diagrams depict the significant impact of interactions 

between the Mass of KNO3*pH, Mass of KNO3*[Lanasyn Black], Triton X-

100*pH, and pH*[Lanasyn Black]. The maximum extraction yield was achieved 

at the center level of all parameters, suggesting significance. 
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Fig. 5. Contour plots and response surface of the effects: (a) Mass of KNO3 and initial pH of 

the solution; (b) Mass of KNO3 and initial concentration of Lanasyn black; (c) Triton X-100 

and initial pH of the solution; (d) initial pH of the solution and initial concentration of 

Lanasyn black on the extraction of Lanasyn black by cloud point extraction. 

Response optimization 

Response optimization was used to optimize the extraction in MINITAB 19.0, 

and the experiment was run at the specified solution, yielding an extraction rate of 

97.87 %, which was extremely close to the predicted value. The mass of KNO3 

was 1.07575 g, Triton X-100 was 0.368 W/W, the beginning pH of the solution 

was 9.03, the initial concentration of Black Lanasyn was 22.575 ppm, and this 

combination produced the highest extraction yield. 

ANN-LMA modelling 

Using a feed-forward back propagation network and the Levenberg-

Marquardt algorithm, the ANN-GA model was developed. Three data set 

subdivisions were generated. Each subset contained 80% of the testing data, 10% 

of the validation data, and 10% of the network training data. It is important to note 

that these divisions were wholly arbitrary. Inputs and outputs are immutable 

elements of the ANN's topology (architecture). Moreover, the number of concealed 

layers and their respective neurons represent a series of variable elements.  
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Fig. 6. Regression and performance plots of the ANN-LMA model. 
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Fig. 6 shows that learning converged after 9 periods with the lowest average 

square error. Thus, during the ANN iterative learning, the model achieved a 

maximum R-value of 0.987772 (Fig. 6a) and a minimum MSE value of 2.0727 × 

10-3 (Fig.6b) at nine epochs for ten neurons in the hidden layer. Therefore, the best 

4-10-1 network architecture is used for process optimization, representing 4 entries 

in the first layer, 10 hidden neurons, and one upper layer output. The R2 value close 

to 1 and a low MSE value indicate that the performance of the developed model is 

satisfactory and corresponds to the experimental extraction values of the LN per 

point of disruption. 

The reliability of the postulated model for predicting the maximum output data 

was confirmed while using the optimal points suggesting the ANN 37 (KNO3 mass: 

1.04 g; beginning pH of solution=8.99, initial of Black Lanasyn 24.57 ppm, and 

0.34 W/W of Triton X-100). The extraction yield of the experimentally recorded 

LN was 99.98 % suggesting the suitability and validity of the model. However, the 

optimums achieved by ANN resulted in an even higher extraction yield than with 

CCD modelling.38-41 

Comparative study between CCD and ANN-LMA 

In order to evaluate the efficacy of the CCD and ANN models, the outputs 

were compared to the relevant experimental data. 

 
Fig. 7. Comparative parity diagram of experimental and predicted results. 
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To verify the suitability of the given models, the Black Lanasyn extraction 

yield predicted by the CCD and ANN models was compared with the experimental 

results obtained in Table 2. Fig. 7 shows a comparative parity diagram of predicted 

and experimental results. 

The determination coefficient R = 0.97498 for the CCD model and R= 

0.98772 for the ANN model shows that the values of the model-based predictions 

are in perfect accordance with the experimental results. 

As a result, the proposed models are well-adapted to data and provide stable 

responses. However, compared to the RSM model, the ANN model has a higher 

predictive capacity and accuracy based on the experimental results. The R-value is 

closer to 1.0. 

In addition to the regression coefficient (R), the observed MAE, MSE, AAD, 

and RMSE values for both models were determined to provide a statistical 

indication of the accuracy of the model predictions. The MAE, MSE, AAD, and 

RMSE values for the CCD and ANN models have been calculated and are 

presented below. 

The MAE (0.1203), MSE (0.4488), AAD (0.1363%) and RSME (0.6699) for 

the CCD model are higher than those (0.0955, 0.2831, 0.1097 % and 0.5321, 

respectively) for the ANN model. This means the ANN model offers a higher 

modeling capacity than the CCD model. This result is similar to several 

researchers.42,43 

CONCLUSION 

The Lanasyn black was obtained by the textile sector, and is among of the 

more frequently used in manufacturing. It is difficult to remove during wastewater 

treatment. Their removal in an aqueous solution was accomplished by cloud point 

extraction. For the most significant yield of the extraction of Lanasyn Black using 

cloud point extraction, the multivariable process parameters have been 

independently optimized using Central composite design (CCD) and Artificial 

Neural Network- Levenberg-Marquardt algorithm (ANN-LMA). The ANN-LMA 

model predicts the extraction yield (99.98%) in optimal conditions. The most 

recent experimental validation of the model mentioned above's predictions using 

ANN-LMA and CCD is found to be good, with coefficients of determination of 

0.997 and 0.9777, respectively. 

Dedicated to the memory of Professor Mohamed Amine DIDI, who passed away on 

January 17, 2023. You will never be forgotten, my dear Professor. 
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И З В О Д 
 

ЦЕНТРАЛНИ КОМПОЗИТНИ ДИЗАЈН (CCD) И LEVENBERG-MARQUARDT АЛГОРИТАМ 
ЗАСНОВАН НА ВЕШТАЧКОЈ НЕУРОНСКОЈ МРЕЖИ (ANN-LMA) ЗА ИЗДВАЈАЊЕ 

ЛАНАСИН ЦРНЕ БОЈЕ ЕКСТРАКЦИЈОМ У ТАЧКИ ЗАМУЋЕЊА 

AFAF AMARA-REKKAB1,2 

1Institute of Science and Technology, Department of Hydraulics, University Center of Maghnia, Maghnia, 

Algeria, 2Laboratory of Separation and Purification Technologies, Department of Chemistry - Faculty of 

Sciences, University of Tlemcen, Box 119, 13000, Algeria 

Ланасин црна боја је међу најчешће коришћеним у производњи, нарочито текстилној 
индустрији, и тешко је уклонити је током третмана отпадних вода. За њену елиминацију у 
воденом раствору коришћена је екстракција у тачки замућења. Параметри 
мултиваријантног процеса су независно оптимизовани коришћењем централног 
композитног дизајна и вештачке неуронске мреже, засноване на Levenberg-Marquardt 
алгоритму за највећи принос екстракције Ланасин црне боје у тачки замућења. CCD 
предвиђа излазни максимум од 97.01%, под благо измењеним параметрима процеса. Ипак, 
ANN-LMA модел предвиђа принос екстракције од 99.98%, користећи количину KNO3=1.04 
g, почетни pH раствора 8.99, почетну вредност Ланасин црне боје од 24.57 ppm и 0.34 W/W 
Тритонa X-100. Са коефицијентима детерминације од 0.997 и 0.9777, најновија емпиријска 
верификација предвиђања модела помоћу CCD и ANN-LMA је одређена као 
задовољавајућа. 

(Примљено 20. септембра 2023; ревидирано 8. новембра 2023; прихваћено 4. марта 2024.) 
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