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Abstract: In this study, a hybrid modeling approach combining first-principles 

equations with an artificial neural network was developed to reduce operating 

costs and carbon emissions in process utility systems of ethylene plant. The 

artificial neural network accurately predicted turbine power outputs under 

various operating conditions, with low maximum absolute percentage errors 

across all three turbines, demonstrating its ability to effectively capture nonlinear 

system behavior. The economic analysis showed that natural gas prices have a 

greater cumulative impact on operating expenses than the carbon tax due to their 

greater variability. Although the carbon tax has a higher local sensitivity, the 

steady increase in natural gas prices represents a persistent economic burden. 

This demonstrates the importance of managing fuel costs and monitoring 

changes in carbon policy to mitigate sudden increases in operating costs. With 

increasing output, the operating costs of the propylene and cracked gas turbines 

rose almost linearly, with the costs per megawatt rising more sharply for the 

propylene turbine. The ethylene turbine significantly impacted operating 

expenses despite lower output, showing small output changes can affect costs. 

Overall, the proposed methodology provides a reliable framework for optimizing 

energy performance, predicting fuel consumption and supporting operational 

decision in large-scale processes. 

Keywords: utility system; modeling; artificial neural network; energy efficiency. 

INTRODUCTION 

Utility systems are fundamental components in a wide range of industrial 

applications, from power generation and chemical processing to manufacturing 

and district heating. These systems typically involve complex thermodynamic 
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processes, including heat exchange, phase transformation, and mechanical work, 

often facilitated through steam turbines, boilers, heat exchangers, and multi-stage 

compressors. They represent a notable example where optimizing operating 

parameters can yield significant benefits, owing to their inherent susceptibility to 

energy efficiency losses. Consequently, the optimization of operating parameters 

in utility systems can lead to substantial energy savings and enhanced overall 

system performance. To overcome the limitations of purely physical or purely 

data-driven approaches, hybrid modeling has emerged as a promising framework. 

Hybrid models integrate deterministic and stochastic elements to leverage the 

strengths of both domains, achieving the precision and structure of rule-based 

systems while incorporating the flexibility and uncertainty modeling of 

probabilistic approaches, ultimately enhancing predictive accuracy, robustness, 

and adaptability in complex environments. In this context, stochastic elements 

refer to data-driven approaches such as artificial neural networks, which, although 

deterministic at inference, incorporate stochasticity during training and can 

effectively capture complex, nonlinear relationships under uncertainty. When 

applied to utility systems, hybrid modeling can enhance fault detection, predictive 

maintenance, performance optimization, and real-time control.  

Equipment like steam turbines and multi-stage compressors, after extended 

periods of use, lose efficiency and are prone to mechanical wear, performance 

degradation, and increased maintenance requirements. By leveraging data-driven 

models, it is possible to monitor the performance of such equipment in real time 

and implement optimization strategies that extend equipment life and maintain 

energy efficiency. 

Numerous studies have optimized the performance of utility systems using 

various modelling approaches. Mavromatis and Kokossis1 developed a turbine 

hardware model based on Willan's line, while Zhu et al.2 and Li et al.3 used mixed-

integer nonlinear programming (MINLP) models to optimize multi-turbine utility 

systems, achieving cost and coal reductions. Recent work4-8 has integrated AI 

techniques, such as artificial neural networks (ANN) and machine learning, to 

predict performance and improve operational efficiency of steam turbines and 

related systems. Various machine learning approaches have been applied to energy 

systems, including data envelopment analysis with artificial neural networks for 

petrochemical energy optimisation4, for steam methane reforming control5, 

extreme learning for steam turbine monitoring6, and regression models for boiler 

and turbine performance7. Despite these advances, few studies9-11 have combined 

deterministic models with ANNs to simultaneously increase steam production 

efficiency and reduce costs. A reduction of 1.4% in steam production costs was 

achieved by using a hybrid ANN model to optimize turbine operating parameters, 

as demonstrated by Li et al.9 A hybrid ANN-mechanistic model was developed to 

accurately characterize the performance of multistage compressors, as shown by 
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Chu et al.10 Another study11 modelled and optimized a steam turbine power plant 

with fifteen design variables, resulting in up to a 3.76% increase in thermal 

efficiency and a 3.84% reduction in total cost rate compared to actual plant data. 

This highlights the potential for hybrid models that utilize both physical principles 

and data-driven methods for better adaptability and accuracy. 

Most existing approaches tend to rely heavily on deterministic models, which 

may lack flexibility especially when experimental measurement of all required 

operating parameters are not available. As a result, there is significant potential for 

further exploration and development of hybrid modeling approaches that combine 

the strengths of both physical principles and data-driven techniques. Such 

integrated models may offer higher predictive power and adaptability of neural 

networks while maintaining the transparency and robustness of first-principles 

equations.  

In this study, a hybrid modeling approach was developed to minimize the 

operational expenditure of the utility system by integrating deterministic 

optimization techniques with artificial neural networks, thereby enhancing the 

system's efficiency, reliability, and cost-effectiveness under varying operational 

conditions. 

PROBLEM STATEMENT AND MODEL FORMULATION 

The utility system analyzed in this study, is illustrated in Fig. 1. Steam is initially generated 

in a boiler and routed to a high-pressure (HP) steam header, which serves as the central 

distribution point for steam delivery across the plant. From the HP header, steam is directed to 

three steam turbines, designated as RT-1, RT-2, and RT-3, each serving distinct process units 

associated with cracked gas, propylene, and ethylene production, respectively. Additionally, a 

portion of the HP steam is diverted through a pressure reducing valve (RV-1), which lowers the 

pressure before routing it into the medium-pressure (MP) steam header and ultimately to the 

condensate system. 

Within the MP header, the medium-pressure steam is mixed with Boiler Feed Water 

(BFW) to adjust its thermal state. This mixing reduces the steam temperature to the 

corresponding saturation temperature at the designated pressure level, thereby ensuring that the 

steam entering downstream units is saturated rather than superheated. Maintaining saturated 

steam conditions is essential to protect equipment and ensure optimal performance, 

particularly for components designed to operate specifically under such conditions. 

Although a deterministic model of the boiler is available and can be reliably used to 

simulate steam generation across a range of operating conditions, modeling the rest of the utility 

system poses significant challenges. A
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Fig. 1. Utility system 

In particular, the absence of sufficient real-time measurements and detailed operating data 

for key components—including the steam turbines (RT-1, RT-2, and RT-3), the pressure 

reducing valve (RV-1), and the downstream steam network—limits the ability to construct a 

fully deterministic model for the entire system. These components exhibit complex, nonlinear 

behavior that cannot be accurately captured without comprehensive instrumentation and 

historical performance data. 

To address this limitation, a hybrid modeling approach has been employed. The boiler is 

modeled using a deterministic, first-principles framework grounded in thermodynamic laws, 

ensuring accurate representation of steam generation processes. For the remaining components 

of the utility system, an artificial neural network (ANN) is developed using available historical 

operational data. The ANN is trained to capture the nonlinear relationships and dynamic 

behavior of these units, effectively compensating for the lack of detailed physical models and 

real-time measurements. 

This hybrid approach combines the strengths of both modeling paradigms—physical 

accuracy from the deterministic model and adaptive predictive capability from the ANN. As a 

result, it enables a more comprehensive and practical representation of the entire utility system, 

supporting improved performance analysis, operational optimization, and informed decision-

making under variable plant conditions. As such, the primary goal of this work is to optimize 

the utility system with respect to steam generation, aiming to reduce operating expenses (OPEX) 

and simultaneously lower CO₂ emissions. By minimizing the amount of steam generated (and 

consequently the natural gas consumption required in the boiler) both economic and 

environmental benefits can be achieved. 

The boiler hardware model (BHM) was taken from the study of Shang and Kososis12, 

which considers the relationship between fuel input, heat loss, and the resulting steam output. 

The fuel requirement (Qfuel) is calculated based on the heat added to the steam (Qsteam) and the 

heat losses (Qloss). 

𝑄fuel = 𝑄steam + 𝑄loss (1) 

The heat,  𝑄steam, can be estimated from the following relation:  

𝑄steam = (𝐶𝑝𝑇sat + 𝑞)𝑀HP (2) 
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where  𝐶𝑝  represents the specific heat of saturated steam (kJkg-1·K-1),  𝑇sat   is the 

temperature of the saturated steam (K) , 𝑞   denotes the specific heat load of fuel (kJ kg-1) 

and 𝑀HP is the mass flow rate of high-pressure steam (th-1), 

while the heat losses from the relation below: 

𝑄loss = (𝐶𝑝𝑇sat + 𝑞)(𝑎𝑀HPmax + 𝑏𝑀HP) (3) 

where 𝑎, 𝑏 represent regression parameters adjusted on the basis of the experimental data 

and 𝑀HPmax
 is the maximum steam mass flow rate through the boiler (th-1). 

By combining equations (2) and (3), the total energy input from fuel combustion, 𝑄fuel,
can be calculated using the following equation: 

𝑄fuel = (𝐶𝑝𝑇sat + 𝑞)[(1 + 𝑏)𝑀HP + 𝑎𝑀HPmax]  (4) 

The BHM is a deterministic model for predicting the fuel demand of a boiler based on its 

size, load and operating conditions. It takes into account heat losses and thermodynamic 

properties, making the model more realistic compared to constant efficiency assumptions. 

Due to the lack of measurement data for key operating parameters- in particular for the 

outlets of the three turbines feeding into the MP header, their efficiencies, and the outlet 

conditions of RV-1  the remaining utility system cannot be accurately modelled using 

conventional deterministic methods. Therefore, an artificial neural network (ANN), presented 

in Fig. 2, is used to capture the system behavior under these conditions. 

Fig. 2. The implemented artificial neural network 

The input data for the ANN — including the outlet temperature and pressure of the boiler 

stream, the inlet steam mass flow rates to the two sections of turbine RT-1, to the two sections 

of turbine RT-2, to turbine RT-3, to the pressure reduction valve RV-1 and the ambient 

temperature — are obtained directly from the plant measurement system.  

By combining the above-mentioned BHM and the artificial neural network (details in the 

Supplement), a new hybrid model was developed using Python, specifically the Keras library13. 

Conventional linear and nonlinear models typically require larger datasets and often struggle to 

capture complex system interactions. In contrast, our hybrid model is more efficient and 

achieves comparable or improved performance with substantially less data. Although it 

demonstrates improved prediction accuracy over the deterministic model, its applicability is 
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subject to certain constraints. The hybrid framework is valid only within the operational range 

covered by the training data and underlying assumptions, which include steady-state and 

dynamic conditions corresponding to boiler loads. Additionally, the neural network component 

of this hybrid model cannot account for unmeasured disturbances. The primary purpose of this 

model is to reduce operating costs and simultaneously lower CO₂ emissions, as quantified using 

the following equations: 

𝑀HP = 𝑀RT1,in + 𝑀RT2,in + 𝑀RT3,in + 𝑀RV−1,in (5) 

𝑀MP = 𝑀RT1,out + 𝑀RT2,out + 𝑀RT3,out + 𝑀RV−1,out + 𝑀BFW,MP,NN (6) 

All the following mass flow rates, Mi, are given in tons per hour (t·h⁻¹) and are defined as:  

𝑀HP – required for the high-pressure steam; 𝑀RT1,in – required inlet for the cracked gas 

turbine; 𝑀RT2,in  – required inlet for the propylene turbine; 𝑀RT3,in  – required inlet for the 

ethylene turbine; 𝑀MP – of the medium-pressure steam header; 𝑀RT1,out – of the cracked gas 

turbine outlet; 𝑀RT2,out – of the propylene turbine outlet; 𝑀BFW,MP,NN – boiler feed water stream 

entering the MP header, which is estimated using the ANN. 

Equation (5) defines the steam mass flow in the high-pressure steam header (HP) as the 

cumulative sum of the inlet mass flows to the three steam turbines and the RV-1. Equation (6) 

defines the steam mass flow rate in the medium-pressure (MP) steam header as the cumulative 

sum of the outlet mass flows from the three steam turbine, outlet of RV-1 and the boiler feed 

water stream entering the MP header.  The boiler feed water stream is estimated using the 

artificial neural network. The total heat output and natural gas flow rate, are given by the 

following relations: 

𝑄 = 𝑀BFW(ℎL − ℎBFW) + 𝑀HP(ℎSH − ℎL) (7) 

𝑀NG =
𝑄

0.85∙LHV
 (8) 

where 𝑄 is the total heat output (MW), 𝑀BFW is the mass flow rate of the boiler feed water 

(t·h⁻¹), ℎ𝐿 is the specific enthalpy of the liquid water at operating pressure (kJkg-1), ℎBFW is the 

specific enthalpy of the boiler feed water (kJkg-1) , ℎSH  is the specific enthalpy of the 

superheated steam leaving the boiler (kJkg-1), 𝑀NG is the mass flow rate of natural gas (kgs-

1), and LHV – lower calorific value of natural gas  (MJkg-1). 

Equations (7) and (8) quantify the required fuel input for boiler heating and determine the 

corresponding amount of natural gas needed to provide this thermal energy. In Equation (8), 

0.85 means that 85 % of the energy from the combustion of the natural gas is actually transferred 

to the boiler as useful heat. Equation (9) defines the operational expenditure, OPEX, as the sum 

of the cost of the required natural gas and the carbon tax associated with the corresponding CO₂ 

emissions resulting from its combustion. 

OPEX = Pr(NG) ∙ 𝑀NG + EF(CO2) ∙ 𝑀NG ∙ CTX (9) 

where Pr(NG) is the price of natural gas ($kg-1), EF(CO2) is the emission factor for CO2

(kg CO2kg-1 NG), and CTX is the carbon tax ($kg-1). 

OPEX is minimized based on the following constrains: 

|𝑊RTi,req − 𝑊RTi,NN|  ≤ 0.01    for 𝑖 = 1,2,3  (10) 

 𝑀MP ≥ 𝑀MP,req  (11) 
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where 𝑊RTi,req is the required (or actual) power output of turbine 𝑖 (MW), 𝑊RTi,NN is the 

predicted power output of turbine 𝑖, obtained from the artificial neural network (MW), and 

𝑀MP,req is the required mass flow rate in the medium-pressure steam header (t·h⁻¹). 

Equation (10) states that the discrepancy between the required output of the three turbines 

and the values predicted by the neural network must be minimized, while equation (11) enforces 

the mass balance condition for the medium-pressure steam line, which states that the incoming 

steam mass flow must be equal to the medium-pressure steam demand. 

The proposed hybrid model integrates a deterministic BHM, which is used to compute the 

required fuel input based on thermodynamic principles, with an artificial neural network (ANN) 

module that supplements the system by providing additional data necessary for imposing model 

constraints. 

Parameter estimation 

The parameters for this hybrid model of the boiler and of the utility system given in Table 

I, were estimated based on historical operating data from the utility system.  

TABLE I. Parameters of the boiler and the utility system 

Boiler Utility system 

MHP (th-1) 169 Tout,boiler (C) 465 

MBFW (th-1) 178 pout,boiler (bar) 102 

h BFW (kJkg-1) 502.4 MRT1,in, S1 (th
-1) 86.0 

h L (kJkg-1) 1416.4 MRT1,in, S2 (th
-1) 45.4 

h SH (kJkg-1) 3280.1 MRT2,in, S1 (th
-1) 60.0 

Q (MW) 132.6 MRT2,in, S2 (th
-1) 46.3 

LHV (MJkg-1) 52.5 MRT3,in (th
-1) 22.9 

MNG  (kgs-1) 3 M RV-1,in (th
-1) 0.06 

𝑀HPmax
 (th-1) 260 Tsur (C) 15 

a 0.0126 

b 0.2156 

In addition, to estimating the ANN parameters, the optimization framework was used to 

identify the optimal operating conditions of the utility system for input into the neural network.  

These parameters were rescaled by normalizing the input parameters to a dimensionless range 

between -1 and 1. For each variable, the normalized (optimized) values were computed 

according to: 

𝑥opt = 2 ∙
(𝑥in−𝑥min)

𝑥max−𝑥min
− 1 (12) 

Where xin is the actual input value, and xmin and xmax represent the lower and upper bounds 

of the corresponding parameter. This transformation ensures that all parameters are optimized 

consistently within their feasible range. 

After constructing the neural network, the weight matrices were initialized for each layer. 

Specifically, W1 and W2, corresponding to the first and second hidden layers, were generated 

with dimensions [12 x 9], while the output layer matrix W3 was generated with dimensions [5 x 

12]. In addition, bias vectors were created for each layer: c1 and c2 for the hidden layers (each 

containing 12 elements) and b3 for the output layer (containing 5 elements). Thus, both hidden 

layers consisted of 12 neurons, whereas the output layer comprised 5 neurons.  
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For clarity and reproducibility, the complete numerical values of the generated weight 

matrices (W1, W2, W3) and bias vectors (c1, c2, c3) can be provided upon request. 

After the weight and bias matrices were generated, the pre-activation values Z and 

activation values A were estimated (see Supplementary, Eqs. (S1) and (S2), respectively).  The 

input values, as previously mentioned, were normalized prior the calculations. 

RESULTS AND DISCUSSION 

The results obtained from the hybrid modeling framework demonstrate its 

capability to accurately simulate the dynamic behavior of the utility system under 

diverse operating conditions. Fig. 3 illustrates the relationship between operating 

expenditure (OPEX) and two important economic factors: natural gas price (on the 

left y-axis) and carbon tax (on the right y-axis). Each variable is shown as a 

function of its own OPEX range, reflecting its individual impact on system costs. 

Fig. 3. Correlation between Operational Expenditure, Natural Gas Price, and Carbon Tax. 

Fig. 3 shows that the price of natural gas has a much greater impact on 

operating expenses than the carbon tax. The trends show a positive linear 

correlation between OPEX and both variables. While the carbon tax curve has a 

steeper local slope, the natural gas price varies over a much wider range of 

operating expenditures, implying that the natural gas price exerts a greater 

cumulative influence on OPEX over the entire operating window. The natural gas 

price exhibits a consistent and gradual increase across a wide range of operating 

expenses, suggesting a stable but cumulative economic burden. In contrast, the 

carbon tax exhibits a higher local sensitivity, suggesting that even small increases 
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in carbon cost policies within certain thresholds can lead to noticeable OPEX 

fluctuations. 

In Fig. 4 are given the effects of cracked gas turbine power output, propylene 

turbine power output and ethylene turbine power output, on operational 

expenditure. Fig. 4a shows that increasing the cracked gas turbine output from 7 

MW to 14 MW leads to an almost linear increase in operating costs, from about $ 

32.8 million to $ 38.9 million. This indicates that the cracked gas turbine has a 

significant and direct impact on operating costs, likely due to the fact that it 

provides most of the mechanical power in the system. The steady increase indicates 

a cost-dependent relationship, possibly related to fuel consumption, load 

conditions, or degradation of efficiency at higher loads. 

Fig. 4. Effect of: (a) Cracked gas turbine power output (b) Propylene turbine power output and 

(c) Ethylene turbine power output, on operational expenditure  

Moreover, Fig. 4b demonstrates a similar trend for the propylene turbine, 

where operating costs rise from about $ 41.3 million to $ 48.6 million as output 

increases from 7 MW to 12 MW. The steeper increase compared to Fig. 4a suggests 

that the propylene turbine has an even greater marginal cost per MW, possibly due 
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to the particular operating conditions or energy conversion efficiency. This result 

underlines the importance of carefully managing the output of this turbine to 

minimize the cost impact. Similarly, Fig. 4c demonstrates the relationship between 

the output of the ethylene turbine and OPEX, where the output range is smaller 

(1.25 MW to 2.4 MW). OPEX increases slightly from around $ 38.5 million to $ 

39.6 million. While the absolute increase is smaller than in the previous cases, the 

relatively large increase in a narrow range indicates that even small increases in 

ethylene turbine output can affect system costs. 

CONCLUSION 

In this study, a hybrid modeling approach was developed combining first-

principles equations with artificial neural network models to reduce operating costs 

and lower carbon emissions. The ANN model was trained to predict the required 

turbine power outputs under different operating conditions. The deviation between 

the predicted and actual turbine performance served as an important performance 

measure to evaluate the accuracy of the model. The results show a high agreement 

between the ANN predictions and the measured data, with low maximum absolute 

percentage error values for all three turbines. These results confirm the ability of 

the ANN to effectively capture the nonlinear behavior of steam-driven systems 

under variable loads. The results also show that the natural gas price has a much 

larger cumulative impact on operating costs than the carbon tax, primarily due to 

its broader range of variation within the operating window. While the carbon tax 

demonstrates a steeper local slope, indicating a high sensitivity to incremental 

changes, the natural gas price trend is more gradual but sustained, suggesting a 

consistent and growing economic burden. This difference highlights the 

importance of fuel cost management and diversification strategies, as well as the 

need to monitor evolving carbon policy thresholds that could trigger sudden 

increases in operating costs. The cracked gas and propylene turbines show a sharp, 

near-linear increase in operating costs as output increases, with the propylene 

turbine showing a greater increase in cost per MW. The ethylene turbine, while 

operating in a lower range, also has a noticeable impact on OPEX, indicating that 

even small changes in output can affect system costs. The proposed methodology 

provides a reliable and efficient framework for optimizing energy performance, 

predicting fuel consumption and supporting decision making in large thermal 

process systems. 

NOMENCLATURE 

ANN-Artificial Neural Network 

𝑎 – regression parameter adjusted on the basis of the experimental data 

BFW–Boiler Feed Water 

BHM- Boiler Hardware Model 

b– regression parameter adjusted on the basis of the experimental data 

𝐶𝑝– the specific heat of saturated steam (kJkg-1·K-1) 
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CTX – carbon tax ($kg-1) 

𝑐𝑖   i=1,2,3 – bias vector 

EF(CO2) – emission factor for CO2 (kg CO2kg-1 NG) 

HP-high pressure 

ℎBFW – specific enthalpy of the boiler feed water (kJkg-1) 

ℎ𝐿 – specific enthalpy of the liquid water at operating pressure (kJkg-1) 

ℎSH – specific enthalpy of the superheated steam leaving the boiler (kJkg-1) 

LHV – lower calorific value of natural gas (MJkg-1) 

𝑀 – steam mass flow rate (th-1) 

MINLP -Mixed Integer Nonlinear Programming 

MP-medium pressure 

𝑀BFW – mass flow rate of the boiler feed water (t·h⁻¹) 

MBFW,MP,NN – boiler feed water steam entering the MP header estimated by ANN (t·h⁻¹)

𝑀HP –mass flow rate of HP steam (th-1) 

𝑀HPmax
  – max. steam mass flow rate through the boiler (th-1) 

𝑀MP –mass flow rate of MP steam (th-1) 

𝑀MP,req –required mass flow rate of MP steam (th-1) 

𝑀NG – natural gas mass flow rate (kgs-1) 

SUPPLEMENTARY MATERIAL 

Additional data are available electronically at the pages of journal website: 

https://www.shd-pub.org.rs/index.php/JSCS/article/view/13552, or from the corresponding 

author on request. 
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И З В О Д 

ОПТИМИЗАЦИЈА РАДА СИСТЕМА ПАРЕ У ФАБРИЦИ ЕТИЛЕНА ПОМОЋУ ХИБРИДНОГ 
МОДЕЛА ВЕШТАЧКЕ НЕУРОНСКЕ МРЕЖЕ И МОДЕЛА ЗАСНОВАНОГ НА

ФУНДАМЕНТАЛНИМ ПРИНЦИПИМА 

АЛЕКСА МИЛАДИНОВИЋ1,*, МИРЈАНА КИЈЕВЧАНИН2, ЈОВАН ЈОВАНОВИЋ2, SABLA ALNOURI3, ВЛАДИМИР 

СТИЈЕПОВИЋ1, МИРКО СТИЈЕПОВИЋ2 

1Институт за хемију, технологију и металургију, Институт од националног значаја за Републику

Србију, Универзитет у Београду, Његошева 12, 11000 Београд, Србија, 2Технолошко-металуршки

факултет, Универзитет у Београду, Карнегијева 4, 11000 Београд, Србија, и 3Центар за прераду гаса, 

Инжењерски факултет, Универзитет у Катару, Доха, Катар. 

У овом раду је развијен модел који комбинује фундаменталне једначине и вештачку 
неуронску мрежу у циљу смањења оперативних трошкова и емисије CO2 у оперативним 
системима фабрике етилена. Вештачка неуронска мрежа може да прецизно предвиди снагу 
три турбине под различитим оперативним условима са ниском максималном апсолутном 
грешком, што демонстрира способност мреже да прецизно прикаже нелинеарно понашање 
система. Економска анализа система је показала да цене природног гаса имају већи, 
кумулативни утицај на оперативне трошкове од пореза на CO2 због њихове веће 
варијабилности. Иако порез на CO2 има већи непосредан утицај, стални раст цена 
природног гаса представља дугорочно, економско оптерећење. Ово указује на значај 
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управљања трошковима горива и праћење промена у политици заштите од утицаја CO2 како 
би се ублажила нагла повећања оперативних трошкова. Са порастом снаге, оперативни 
трошкови пропиленске и крек-гас турбине расту готово линеарно, при чему је уочен 
израженији раст трошкова по мегавату код пропиленске турбине. Етиленска турбина је 
имала значајан утицај на оперативне трошкове упркос нижем производном капацитету, 
што указује да чак и мале промене у снази имају утицај на трошкове. Предложена 
методологија пружа поуздан оквир  за енергетску оптимизацију, предвиђање потрошње 
горива и подршку у доношењу одлука у великим, индустријским процесима. 

(Примљено 17. септембра; ревидирано 22. новембра; прихваћено 3. децембра 2025.) 
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