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Abstract: In this study, a hybrid modeling approach combining first-principles
equations with an artificial neural network was developed to reduce operating
costs and carbon emissions in process utility systems of ethylene plant. The
artificial neural network accurately predicted turbine power outputs under
various operating conditions, with low maximum absolute percentage errors
across all three turbines, demonstrating its ability to effectively capture nonlinear
system behavior. The economic analysis showed that natural gas prices have a
greater cumulative impact on operating expenses than the carbon tax due to their
greater variability. Although the carbon tax has a higher local sensitivity, the
steady increase in natural gas prices represents a persistent economic burden.
This demonstrates the importance of managing fuel costs and monitoring
changes in carbon policy to mitigate sudden increases in operating costs. With
increasing output, the operating costs of the propylene and cracked gas turbines
rose almost linearly, with the costs per megawatt rising more sharply for the
propylene turbine. The ethylene turbine significantly impacted operating
expenses despite lower output, showing small output changes can affect costs.
Overall, the proposed methodology provides a reliable framework for optimizing
energy performance, predicting fuel consumption and supporting operational
decision in large-scale processes.

Keywords: utility system; modeling; artificial neural network; energy efficiency.
INTRODUCTION

Utility systems are fundamental components in a wide range of industrial
applications, from power generation and chemical processing to manufacturing
and district heating. These systems typically involve complex thermodynamic
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processes, including heat exchange, phase transformation, and mechanical work,
often facilitated through steam turbines, boilers, heat exchangers, and multi-stage
compressors. They represent a notable example where optimizing operating
parameters can yield significant benefits, owing to their inherent susceptibility to
energy efficiency losses. Consequently, the optimization of operating parameters
in utility systems can lead to substantial energy savings and enhanced overall
system performance. To overcome the limitations of purely physical or purely
data-driven approaches, hybrid modeling has emerged as a promising framework.
Hybrid models integrate deterministic and stochastic elements to leverage the
strengths of both domains, achieving the precision and structure of rule-based
systems while incorporating the flexibility and wuncertainty modeling of
probabilistic approaches, ultimately enhancing predictive accuracy, robustness,
and adaptability in complex environments. In this context, stochastic elements
refer to data-driven approaches such as artificial neural networks, which, although
deterministic at inference, incorporate stochasticity during training and can
effectively capture complex, nonlinear relationships under uncertainty. When
applied to utility systems, hybrid modeling can enhance fault detection, predictive
maintenance, performance optimization, and real-time control.

Equipment like steam turbines and multi-stage compressors, after extended
periods of use, lose efficiency and are prone to mechanical wear, performance
degradation, and increased maintenance requirements. By leveraging data-driven
models, it is possible to monitor the performance of such equipment in real time
and implement optimization strategies that extend equipment life and maintain
energy efficiency.

Numerous studies have optimized the performance of utility systems using
various-modelling approaches. Mavromatis and Kokossis' developed a turbine
hardware model based on Willan's line, while Zhu et al.? and Li et al.? used mixed-
integer nonlinear programming (MINLP) models to optimize multi-turbine utility
systems, achieving cost and coal reductions. Recent work*® has integrated Al
techniques, such as artificial neural networks (ANN) and machine learning, to
predict performance and improve operational efficiency of steam turbines and
related systems. Various machine learning approaches have been applied to energy
systems, including data envelopment analysis with artificial neural networks for
petrochemical energy optimisation®, for steam methane reforming control®,
extreme learning for steam turbine monitoring®, and regression models for boiler
and turbine performance’. Despite these advances, few studies®!! have combined
deterministic models with ANNs to simultaneously increase steam production
efficiency and reduce costs. A reduction of 1.4% in steam production costs was
achieved by using a hybrid ANN model to optimize turbine operating parameters,
as demonstrated by Li ef al.® A hybrid ANN-mechanistic model was developed to
accurately characterize the performance of multistage compressors, as shown by
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Chu et al.'’ Another study'! modelled and optimized a steam turbine power plant
with fifteen design variables, resulting in up to a 3.76% increase in thermal
efficiency and a 3.84% reduction in total cost rate compared to actual plant data.
This highlights the potential for hybrid models that utilize both physical principles
and data-driven methods for better adaptability and accuracy.

Most existing approaches tend to rely heavily on deterministic models, which
may lack flexibility especially when experimental measurement of all required
operating parameters are not available. As a result, there is significant potential for
further exploration and development of hybrid modeling approaches that combine
the strengths of both physical principles and data-driven techniques. Such
integrated models may offer higher predictive power and adaptability of neural
networks while maintaining the transparency.-and robustness of first-principles
equations.

In this study, a hybrid modeling approach was developed to minimize the
operational expenditure of the utility system by integrating deterministic
optimization techniques with artificial neural networks, thereby enhancing the
system's efficiency, reliability, and cost-effectiveness under varying operational
conditions.

PROBLEM STATEMENT AND MODEL FORMULATION

The utility system analyzed in this study, is illustrated in Fig. 1. Steam is initially generated
in a boiler and routed to a high-pressure (HP) steam header, which serves as the central
distribution point for steam delivery across the plant. From the HP header, steam is directed to
three steam turbines, designated as RT-1, RT-2, and RT-3, each serving distinct process units
associated with cracked gas, propylene, and ethylene production, respectively. Additionally, a
portion of the HP steam is diverted through a pressure reducing valve (RV-1), which lowers the
pressure before routing it into the medium-pressure (MP) steam header and ultimately to the
condensate system.

Within the MP header, the medium-pressure steam is mixed with Boiler Feed Water
(BFW) to adjust its thermal state. This mixing reduces the steam temperature to the
corresponding saturation temperature at the designated pressure level, thereby ensuring that the
steam entering downstream units is saturated rather than superheated. Maintaining saturated
steam conditions is essential to protect equipment and ensure optimal performance,
particularly for components designed to operate specifically under such conditions.

Although a deterministic model of the boiler is available and can be reliably used to
simulate steam generation across a range of operating conditions, modeling the rest of the utility
system poses significant challenges.
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Fig. 1. Utility system

In particular, the absence of sufficient real-time measurements and detailed operating data
for key components—including the steam turbines (RT-1, RT-2, and RT-3), the pressure
reducing valve (RV-1), and the downstream steam network—Ilimits the ability to construct a
fully deterministic model for the entire system. These components exhibit complex, nonlinear
behavior that cannot be accurately captured without comprehensive instrumentation and
historical performance data.

To address this limitation, a hybrid modeling approach has been employed. The boiler is
modeled using a deterministic, first-principles framework grounded in thermodynamic laws,
ensuring accurate represéntation of steam generation processes. For the remaining components
of the utility system, an artificial neural network (ANN) is developed using available historical
operational data. The ANN is trained to capture the nonlinear relationships and dynamic
behavior of these units, effectively compensating for the lack of detailed physical models and
real-time measurements.

This ‘hybrid approach combines the strengths of both modeling paradigms—physical
accuracy from the deterministic model and adaptive predictive capability from the ANN. As a
result, it enables a more comprehensive and practical representation of the entire utility system,
supporting improved performance analysis, operational optimization, and informed decision-
making under variable plant conditions. As such, the primary goal of this work is to optimize
the utility system with respect to steam generation, aiming to reduce operating expenses (OPEX)
and simultaneously lower CO: emissions. By minimizing the amount of steam generated (and
consequently the natural gas consumption required in the boiler) both economic and
environmental benefits can be achieved.

The boiler hardware model (BHM) was taken from the study of Shang and Kososis'?,
which considers the relationship between fuel input, heat loss, and the resulting steam output.
The fuel requirement (QOrel) is calculated based on the heat added to the steam (Qscam) and the
heat losses (Qloss)-

Qfuel = Qsteam T Qloss (D

The heat, Qgieam, can be estimated from the following relation:

Qsteam = (Cstat + @) Myp (2)
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where C, represents the specific heat of saturated steam (kJ-kg''K™"), Ty, is the
temperature of the saturated steam (K),q denotes the specific heat load of fuel (kJ- kg™
and Myp is the mass flow rate of high-pressure steam (t-h),

while the heat losses from the relation below:

Qioss = (Cstat + Q)(aMHPmaX + bMHP) 3)
where a, b represent regression parameters adjusted on the basis of the experimental data
and Myp _ is the maximum steam mass flow rate through the boiler (th™).
By combining equations (2) and (3), the total energy input from fuel combustion, Qgej,
can be calculated using the following equation:

Qtuel = (CpTsar + @)[(1 + b)Myp+ aMyp, | (4)

The BHM is a deterministic model for predicting the fuel demand of a boiler based on its
size, load and operating conditions. It takes into account heat losses and thermodynamic
properties, making the model more realistic compared to constant efficiency assumptions.

Due to the lack of measurement data for key operating parameters- in particular for the
outlets of the three turbines feeding into the MP header, their efficiencies, and the outlet
conditions of RV-1 the remaining utility system cannot be accurately modelled using
conventional deterministic methods. Therefore, an artificial neural network (ANN), presented
in Fig. 2, is used to capture the system behavior under these conditions.
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p out, boiler
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Fig. 2. The implemented artificial neural network

The input data for the ANN — including the outlet temperature and pressure of the boiler
stream, the inlet steam mass flow rates to the two sections of turbine RT-1, to the two sections
of turbine RT-2, to turbine RT-3, to the pressure reduction valve RV-1 and the ambient
temperature — are obtained directly from the plant measurement system.

By combining the above-mentioned BHM and the artificial neural network (details in the
Supplement), a new hybrid model was developed using Python, specifically the Keras library!3.
Conventional linear and nonlinear models typically require larger datasets and often struggle to
capture complex system interactions. In contrast, our hybrid model is more efficient and
achieves comparable or improved performance with substantially less data. Although it
demonstrates improved prediction accuracy over the deterministic model, its applicability is
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subject to certain constraints. The hybrid framework is valid only within the operational range
covered by the training data and underlying assumptions, which include steady-state and
dynamic conditions corresponding to boiler loads. Additionally, the neural network component
of this hybrid model cannot account for unmeasured disturbances. The primary purpose of this
model is to reduce operating costs and simultaneously lower CO: emissions, as quantified using
the following equations:
Myp = MRrr1,in + MRT2,in + MRT3,in + MRV-1,in (5)
Mmp = MRrr1,0ut + MrT2,0ut + MRT3,0ut T MRV-1,0ut + Mprw,MpNN ()

All the following mass flow rates, M, are given in tons per hour (t:h™!) and are defined as:

Myp — required for the high-pressure steam; Mgy j, — required inlet for the cracked gas
turbine; Mg, i, — required inlet for the propylene turbine; Mgr3;, — required inlet for the
ethylene turbine; Myp — of the medium-pressure steam header; Mgt oyt — Of the cracked gas
turbine outlet; Mg oyt — Of the propylene turbine outlet; Mgy, mp Ny — boiler feed water stream
entering the MP header, which is estimated using the ANN.

Equation (5) defines the steam mass flow in the high-pressure steam header (HP) as the
cumulative sum of the inlet mass flows to the three steam turbines and the RV-1. Equation (6)
defines the steam mass flow rate in the medium-pressure (MP) steam header as the cumulative
sum of the outlet mass flows from the three steam turbine, outlet of RV-1 and the boiler feed
water stream entering the MP header. The boiler feed water stream is estimated using the
artificial neural network. The total heat output and natural gas flow rate, are given by the
following relations:

Q = Mgpw(hy, — hgrw) 3‘ Myp (hsy — hy,) (7
Mye = 0.85-LHV (®)

where @ is the total heat output (MW), Mpgyw is the mass flow rate of the boiler feed water
(t-h™), by, is the specific enthalpy of the liquid water at operating pressure (kJ-kg™), hgpy is the
specific enthalpy of the boiler feed water (kJ-kg'),hgy is the specific enthalpy of the
superheated steam leaving the boiler (kJ-kg™!), My is the mass flow rate of natural gas (kg-s”
1, and LHV — lower calorific value of natural gas (MJ-kg™).

Equations (7) and (8) quantify the required fuel input for boiler heating and determine the
corresponding amount of natural gas needed to provide this thermal energy. In Equation (8),
0.85means that 85 % of the energy from the combustion of the natural gas is actually transferred
to the boiler as useful heat. Equation (9) defines the operational expenditure, OPEX, as the sum
of the cost of the required natural gas and the carbon tax associated with the corresponding CO-
emissions resulting from its combustion.

OPEX = Pr(NG) - Myg + EF(CO,) - Mg - CTX )]
where Pr(NG) is the price of natural gas ($-kg™!), EF(CO,) is the emission factor for CO,
(kg CO»kg! NG), and CTX is the carbon tax ($-kg™).
OPEX is minimized based on the following constrains:

|Warireq — Wrrinn| <0.01 fori=123 (10)
Myp = Myp req (11)
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where Wrri req 15 the required (or actual) power output of turbine i (MW), Wrr; ny is the
predicted power output of turbine i, obtained from the artificial neural network (MW), and
Myp req is the required mass flow rate in the medium-pressure steam header (t-h™).

Equation (10) states that the discrepancy between the required output of the three turbines
and the values predicted by the neural network must be minimized, while equation (11) enforces
the mass balance condition for the medium-pressure steam line, which states that the incoming
steam mass flow must be equal to the medium-pressure steam demand.

The proposed hybrid model integrates a deterministic BHM, which s used to compute the
required fuel input based on thermodynamic principles, with an artificial neural network (ANN)
module that supplements the system by providing additional data necessary for imposing model
constraints.

Parameter estimation

The parameters for this hybrid model of the boiler.and of the utility system given in Table
1, were estimated based on historical operating data from the utility system.

TABLE 1. Parameters of the boiler and the utility system

Boiler Utility system
Muyp (t-h'l) 169 Tout.oiter (°C) 465
MBFW (t‘h_l) 178 Pout,boiler (bar) 102
h Brw (kagl) 502.4 MRTl,in, S1 (t'h'l) 86.0
hi (k.]kg-l) 1416.4 MRTl,in, S2 (t'h'l) 45.4
h su(kJkgh) 3280.1 Mzr2n,s1 (thh) 60.0
0 (MW) 132.6 MR12,in, 52 (t'h'l) 46.3
LHV (MJ-kg'l) 52.5 MRr3.in (t'h'l) 22.9
T (°C) 15
a 0.0126
b 0.2156

In addition, to estimating the ANN parameters, the optimization framework was used to
identify the optimal operating conditions of the utility system for input into the neural network.
These parameters were rescaled by normalizing the input parameters to a dimensionless range
between -1 and 1. For each variable, the normalized (optimized) values were computed
according to:

(Xin—Xmin)
xOpt 2 Xmax~Xmin 1 (12)

Where xi, is the actual input value, and xmin and xmax represent the lower and upper bounds
of the corresponding parameter. This transformation ensures that all parameters are optimized
consistently within their feasible range.

After constructing the neural network, the weight matrices were initialized for each layer.
Specifically, W and W, corresponding to the first and second hidden layers, were generated
with dimensions [12 x 9], while the output layer matrix 3 was generated with dimensions [5 x
12]. In addition, bias vectors were created for each layer: ¢; and ¢ for the hidden layers (each
containing 12 elements) and b3 for the output layer (containing 5 elements). Thus, both hidden
layers consisted of 12 neurons, whereas the output layer comprised 5 neurons.



MILADINOVIC et al.

For clarity and reproducibility, the complete numerical values of the generated weight
matrices (Wi, W,, W) and bias vectors (ci, ¢z, ¢3) can be provided upon request.

After the weight and bias matrices were generated, the pre-activation values Z and
activation values 4 were estimated (see Supplementary, Eqgs. (S1) and (S2), respectively). The
input values, as previously mentioned, were normalized prior the calculations.

RESULTS AND DISCUSSION

The results obtained from the hybrid modeling framework demonstrate its
capability to accurately simulate the dynamic behavior of the utility system under
diverse operating conditions. Fig. 3 illustrates the relationship between operating
expenditure (OPEX) and two important economic factors: natural gas price (on the
left y-axis) and carbon tax (on the right y-axis). Each variable is shown as a
function of its own OPEX range, reflecting its individual impact on system costs.

o o o o o
«n [=2] ~ L] [+ -
r T T T
9o

)

Natural Gas Price / $ - kg =1
o
PN

o
w

o
N

0.02

e
-

L L L L L L 0.01
20 30 40 50 60 70 80 90 100

opex/1068

-
o

Fig. 3. Correlation between Operational Expenditure, Natural Gas Price, and Carbon Tax.

Fig. 3 shows that the price of natural gas has a much greater impact on
operating expenses than the carbon tax. The trends show a positive linear
correlation between OPEX and both variables. While the carbon tax curve has a
steeper local slope, the natural gas price varies over a much wider range of
operating expenditures, implying that the natural gas price exerts a greater
cumulative influence on OPEX over the entire operating window. The natural gas
price exhibits a consistent and gradual increase across a wide range of operating
expenses, suggesting a stable but cumulative economic burden. In contrast, the
carbon tax exhibits a higher local sensitivity, suggesting that even small increases
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in carbon cost policies within certain thresholds can lead to noticeable OPEX
fluctuations.

In Fig. 4 are given the effects of cracked gas turbine power output, propylene
turbine power output and ethylene turbine power output, on operational
expenditure. Fig. 4a shows that increasing the cracked gas turbine output from 7
MW to 14 MW leads to an almost linear increase in operating costs, from about $
32.8 million to $ 38.9 million. This indicates that the cracked gas turbine has a
significant and direct impact on operating costs, likely due to the fact that it
provides most of the mechanical power in the system. The steady increase indicates
a cost-dependent relationship, possibly related to fuel consumption, load
conditions, or degradation of efficiency at higher loads.
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Fig. 4. Effect of: (a) Cracked gas turbine power output (b) Propylene turbine power output and
(c) Ethylene turbine power output, on operational expenditure

Moreover, Fig. 4b demonstrates a similar trend for the propylene turbine,
where operating costs rise from about $ 41.3 million to $ 48.6 million as output
increases from 7 MW to 12 MW. The steeper increase compared to Fig. 4a suggests
that the propylene turbine has an even greater marginal cost per MW, possibly due
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to the particular operating conditions or energy conversion efficiency. This result
underlines the importance of carefully managing the output of this turbine to
minimize the cost impact. Similarly, Fig. 4c demonstrates the relationship between
the output of the ethylene turbine and OPEX, where the output range is smaller
(1.25 MW to 2.4 MW). OPEX increases slightly from around $ 38.5 million to $
39.6 million. While the absolute increase is smaller than in the previous cases, the
relatively large increase in a narrow range indicates that even small increases in
ethylene turbine output can affect system costs.

CONCLUSION

In this study, a hybrid modeling approach was developed combining first-
principles equations with artificial neural network-models to reduce operating costs
and lower carbon emissions. The ANN model was trained to predict the required
turbine power outputs under different operating conditions. The deviation between
the predicted and actual turbine performance served as an important performance
measure to evaluate the accuracy of the model. The results show a high agreement
between the ANN predictions and the measured data, with low maximum absolute
percentage error values for-all three turbines. These results confirm the ability of
the ANN to effectively capture the nonlinear behavior of steam-driven systems
under variable loads. The results also show that the natural gas price has a much
larger cumulative impact on operating costs than the carbon tax, primarily due to
its broader range of variation within the operating window. While the carbon tax
demonstrates a steeper local slope, indicating a high sensitivity to incremental
changes, the natural gas price trend is more gradual but sustained, suggesting a
consistent. and growing economic burden. This difference highlights the
importance of fuel cost management and diversification strategies, as well as the
need to monitor evolving carbon policy thresholds that could trigger sudden
increases in operating costs. The cracked gas and propylene turbines show a sharp,
near-linear increase in operating costs as output increases, with the propylene
turbine showing a greater increase in cost per MW. The ethylene turbine, while
operating in a lower range, also has a noticeable impact on OPEX, indicating that
even small changes in output can affect system costs. The proposed methodology
provides a reliable and efficient framework for optimizing energy performance,
predicting fuel consumption and supporting decision making in large thermal
process systems.

NOMENCLATURE

ANN-Artificial Neural Network

a — regression parameter adjusted on the basis of the experimental data
BFW-Boiler Feed Water

BHM- Boiler Hardware Model

b—regression parameter adjusted on the basis of the experimental data
C,— the specific heat of saturated steam (kJ-kg"-K™")



OPTIMIZING UTILITIES WITH HYBRID MODEL 1 1

CTX — carbon tax ($-kg™)

¢; 1=1,2,3 — bias vector

EF(CO,) — emission factor for CO, (kg CO»kg™! NG)

HP-high pressure

hgrw — specific enthalpy of the boiler feed water (kJ-kg™)

h, — specific enthalpy of the liquid water at operating pressure (kJ-kg™)

hsy — specific enthalpy of the superheated steam leaving the boiler (kJ-kg™)
LHV — lower calorific value of natural gas (MJ-kg™)

M — steam mass flow rate (t-h™)

MINLP -Mixed Integer Nonlinear Programming

MP-medium pressure

Mgpyw — mass flow rate of the boiler feed water (t-h™)

Mzrw mp.nn — boiler feed water steam entering the MP header estimated by ANN (t-h™)
Myp —mass flow rate of HP steam (t-h™")

Myp, ., — max. steam mass flow rate through the boiler (th™)

Myp —mass flow rate of MP steam (t-h™)

Myip req —Tequired mass flow rate of MP steam (th™h)

My — natural gas mass flow rate (kg-s™)

SUPPLEMENTARY MATERIAL

Additional data are available electronically at the pages of journal website:
https://www.shd-pub.org.rs/index.php/JSCS/article/view/13552, or from the corresponding
author on request.
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H3BOJ

OIITUMU3ALINIA PATA CUCTEMA TTAPE Y ®ABPUIIU ETUJIEHA TIOMORY XUBPUIHOT
MOZEJIA BEIITAYKE HEYPOHCKE MPEXE U MOJEJIA 3ACHOBAHOI HA
OYHOJAMEHTAJIHUM IMTPUHIUITUMA

AJIEKCA MWJIAIMHOBUR'*, MUPJAHA KMJEBYAHHH?, JOBAH JOBAHOBHR?, SABLA ALNOURI?, BTAITMMUP
CTUJETIOBUR!, MUPKO CTHUJEITIOBUR?

"Mncmuinym 3a xemujy, wexHoN0TUjy u Memanypiujy, HHCTUTY T 0g HAUUOHATHOT 3HAUAja 3a PellyOnuxy
Cpbujy, Ynusepsuitieii y Beoipagy, Fbeiowesa 12, 11000 Beotpag, Cpouja, *TexHonouno-memaLy puiky
(axynimewm, Ynusepsuiuew y Beoipagy, Kapreiujesa 4, 11000 Beoipag, Cpouja, u *Llentnap 3a upepagy iaca,
Humewepcku paxynitieni, Ynueep3uitieii y Kaitiapy, Joxa, Katiap.

Y oBOM pafy je pa3BujeH Mojen Koju KomMOuHyje dyHOaMeHTalHe jefHaYlHe U BEelITauKy
HEYPOHCKY MPEeXy y LIWby CMameia ONepaTUBHUX TpouikoBa U emucHje CO2 y onepaTHBHUM
cucremuma dadpuke eruneHa. Bemrauka HeypoHCKa Mpeska MoXe J1a ITPELIM3HO NPeIBUIN CHATy
TpH TypOHHE NOJ, Pa3INYUTHM ONEPAaTUBHUM YCJIOBUMa Ca HUCKOM MAaKCHMAJTHOM alCOTyTHOM
TPELIKOM, IITO AEMOHCTPHPA CIOCODHOCT MPEsKe fia MPELU3HO MPUKaXE HEJTMHEAPHO MTOHALIAkE
cuctema. ExoHOMCKa aHanM3a cHCTeMa je TOKasasja fAa LieHe IPUPONHOr raca uMmajy sehy,
KyMyJaTUBHH YTHLa] Ha ONEpaTHBHe TpoumkoBe of nopesa Ha CO:2 30or mwuxose Behe
BapujadunHoctu. Mako mopes Ha CO: uma Behu HemocpefaH yTHIlaj, CTaJHU pacT lieHa
NPUPOJHOTr raca INpelncTaBba OyropoYyHO, eKOHOMCKO onTepeheme. OBO ykasyje Ha 3Hayaj
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yIpaBsbatba TPOIIKOBUMA rOpHBa U mpaheme MpoMeHa y TOMUTHIN 3aiuTuTe off yruiaja COz KaKo
Ou ce ydnaxkuna Harmia nosehamwa omepaTuBHHUX TpouikoBa. Ca MOpacTOM CHare, ONepaTHBHU
TPOIIKOBY IIPOIIMIEHCKE M KpeK-rac TypOMHE pacTy rOTOBO JIMHEApHO, NPH 4YeMy je YOueH
W3pakeHWjU pacT TPOIIKOBAa IO MeraBaTy KOZ IMpomwieHcke TypduHe. ETuneHcka TypOuHa je
“MaJla 3HayajaH yTHLAj HA ONEpaTHBHE TPOLIKOBE YIPKOC HWKEeM NMPOHW3BONHOM KallalUTEeTy,
WTO yka3dyje a 4ak W Maje NPOMEHEe y CHa3Hh HMMajy yTHLAj Ha TpPOLIKOBe: IIpeziokeHa
METOJIO/IOTHja MpYXKa MOy3JaH OKBUP 3@ €HEpreTcKy ONTHMH3aLMjy, IpenBuiame MoTpOoLIhe
TOpHBa ¥ TIIOAPLIKY  HOHOIIEHY OUTyKa Y BETUKUM, HHAYCTPHjCKHM ITPOLIECHMA.

(ITpumrbeHo 17. centemdpa; peBUoupaHo 22. HoBemOpa; npuxsaheHo 3. nenembpa 2025.)
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