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PROBLEM STATEMENT AND MODEL FORMULATION 

Artificial neural network (ANN) is used to capture the system behavior 

(illustrated in Fig. 1 in the main body of the paper). 

This configuration defines the input layer of the ANN with nine nodes, each 

corresponding to one of the input parameters. Specifically, the input data was 

normalized to the range [-1,1] using min-max normalization and fed into a 

feedforward neural network consisting of two hidden layers with twelve nodes 

each and an output layer with five nodes. The forward pass of the hidden layers of 

the network is calculated by applying a linear transformation followed by a non-

linear activation function. The linear transformation consists of a weighted sum of 

the inputs plus a bias term: 

𝑍 = (∑ 𝑊𝑖 ∙ 𝑋𝑖
𝑛
𝑖=0 ) + 𝑐 (S1) 

where 𝑍 is a pre-activation value, 𝑊 is a weight matrix associated with the i 

neuron, 𝑐 is a bias vector, and 𝑋 is an input vector for the neuron i. 

The used non-linear activation function (A) is the hyperbolic tangent function, 

which is implemented in the following equivalent form: 

𝐴 =
2

1+𝑒−2𝑍 − 1 (S2) 

The output layer consists of five nodes representing the required power of the 

three turbines (𝑊𝑅𝑇1,req , 𝑊𝑅𝑇2,req and 𝑊𝑅𝑇3,req) the temperature of the MP steam 

before mixing with the BFW and the mass flow rate of the BFW in the mixing 

process. This level only uses the linear transformation. 
The neural network was trained with a data set that was split 80 % for training, 

10 % for validation and 10 % for testing. The Levenberg–Marquardt 
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backpropagation algorithm, which is characterized by its efficiency and fast 

convergence in non-linear regression problems, was used for training. The number 

of training epochs was set to 10000 to ensure sufficient training iterations. The 

maximum absolute percentage error (MAPE) was used to evaluate the prediction 

accuracy, as it is a more representative measure of the model's performance, 

especially when the data contain variables with different magnitudes. 

The performance of the neural network component during the training phase 

is illustrated in Fig. 1, demonstrating its effectiveness in learning the underlying 

patterns and relationships within the operational data. 

Fig. 1. Correlation plots of neural network predictions during training, validation, and testing. 

The model was trained for 1772 epochs, monitoring the mean squared error 

(MSE) for the training, validation and test datasets. The training curve shows a 

rapid initial decrease in error, followed by a slower convergence phase, finally 

reaching a minimum validation error of 4.4136 × 10⁻⁵ at epoch 1766. The close 

agreement between the training, validation and test curves indicates good 

generalization and shows that the model was not over-fitted to the training data. 

To further evaluate the prediction accuracy, the maximum absolute percentage 

error (MAPE) was calculated for each of the five output variables. The resulting 

MAPE values were 0.148 %, 0.221 %, 0.491 %, 0.023 % and 0.199 %, confirming 

the high precision of the model for all outputs. 
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