SUPPLEMENTARY MATERIAL TO
Importance of N-terminal proline for the promiscuous activity of 4-oxalocrotonate tautomerase (4-OT)
JELENA LAZIC1,2, JELENA SPASIC1, DJORDJE FRANCUSKI1, ZORANA TOKIC-VUJOSEVIC3, JASMINA NIKODINOVIC-RUNIC1, VESELIN MASLAK2 and LIDIJA DJOKIC1*
1Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade, Serbia, 2Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, Belgrade, Serbia and 3Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia

1H-NMR DATA FOR COMPOUNDS 4–6

2,2-Dimethyl-4-nitro-3-phenylbutanal (4). 1H-NMR (200 MHz, CDCl3, δ / ppm) 9.53 (1H, s), 7.40–7.13 (5H, m), 4.92–4.64 (2H, m), 3.78 (1H, dd, J1 = 11.0 Hz & J2 = 4.4 Hz), 1.14 (3H, s), 1.01 (3H, s).

2,2-Dimethyl-4-nitro-3-(2-thienyl)butanal (5). 1H-NMR (200 MHz, CDCl3, δ / ppm) 9.54 (1H, s), 7.27–7.22 (1H, m), 7.00–6.91 (2H, m), 4.75–4.59 (2H, m), 4.14 (1H, dd, J1 = 4.9 Hz & J2 = 10.0 Hz), 1.21 (3H, s), 1.09 (3H, s).

3-(4-Chlorphenyl)-2,2-dimethyl-4-nitrobutanal (6). 1H-NMR (200 MHz, CDCl3, δ / ppm) 9.51 (1H, s), 7.32 (2H, d, J = 8.6 Hz), 7.15 (2H, d, J = 8.5 Hz), 4.83 (1H, dd, J1 = 13.1 & J2 = 11.2 Hz), 4.69 (1H, dd, J1 = 13.1 & J2 = 4.4 Hz), 3.77 (1H, dd, J1 = 11.2 & J2 = 4.4 Hz), 1.13 (3H, s), 1.02 (3H, s).

REFERENCES

*Corresponding author. E-mail: lidijadjokic@imgge.bg.ac.rs

S244