

J. Serb. Chem. Soc. 82 (4) S194-S206 (2017)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO

Synthesis, characterization and antimicrobial activity of novel benzofuran- and thiophene-containing diketoxime derivatives

DEMET COSKUN1*, SEHER GUR2 and MEHMET FATIH COSKUN1

¹University of Firat, Faculty of Science, Department of Chemistry, 23119 Elazığ-Turkey and ²University of Firat, Faculty of Science, Department of Biology, 23119 Elazığ-Turkey

J. Serb. Chem. Soc. 82 (4) (2017) 367–377

ANALYTICAL AND SPECTRAL DATA OF THE SYNTHESIZED COMPOUNDS

2,2'-Thiobis[1-(2-benzofuranyl)ethanone] (1). Yield: 80 %, 5.6 g; m.p.: 144– 145 °C; Anal. Calcd. for C₂₀H₁₄O₄S: C, 68.56; H, 4.03 %. Found: C, 68.59; H, 4.01 %; FTIR (KBr, cm⁻¹): 1680 & 1663 (C=O); ¹H-NMR (400 MHz, DMSO--d₆, δ / ppm): 8.00 (2H, s, H-3), 7.83 (2H, d, J = 7.8 Hz, H4), 7.70 (2H, d, J = 8.4 Hz, H7), 7.55 (2H, dd, J = 7.2 Hz & 8.40 Hz, H6), 7.38 (2H, dd, J = 7.1 & 7.5 Hz, H5), 4.11 (4H, s, CH₂); ¹³C-NMR (100 MHz, DMSO-d₆, δ / ppm): 185.48 (C=O), 155.58 (C8), 151.37 (C2), 129.21 (C9), 127.20 (C6), 124.65 (C5), 124.26 (C5), 115.59 (C7), 112.74 (C3), 37.66 (CH₂).

1,1'-(2,5-Thiophenediyl)bis[*1-(2-benzofuranyl)methanone*] (2). Yield: 60 %, 0.89 g; m.p.: 223–224 °C; Anal. Calcd. for C₂₂H₁₂O₄S: C, 70.96; H, 3.25 %. Found: C, 70.92; H, 3.24 %; FTIR (KBr, cm⁻¹) : 1618 (C=O), 1185 (C–O–C); ¹H-NMR (400 MHz, CDCl₃, δ / ppm): 8.37 (2H, *s*, H3), 7.84 (2H, *s*, H12), 7.79 (2H, *d*, *J* = 7.6 Hz, H4), 7.69 (2H, *d*, *J* = 8.4 Hz, H7), 7.56 (2H, *dd*, *J* = 7.6 & 8.0 Hz, H6), 7.39 (2H, *t*, *J* = 7.6 Hz, H5); ¹³C-NMR (100 MHz, CDCl₃, δ / ppm): 174.84 (C=O), 155.86 (C8), 151.94 (C2), 147.17 (C11), 133.94 (C12), 128.63 (C9), 126.75 (C6), 124.15 (C5), 123.34 (C4), 115.57 (C7), 112.39 (C3).

1,1'-(2,5-Thiophenediyl)bis[*1-(2-benzofuranyl)methanone*], *1,1'-dioxime (3)*. Yield: 90 %, 0.97 g; m.p.: 272–274 °C; Anal. Calcd. for C₂₂H₁₄N₂O₄S: C, 65.66; H, 3.51; N, 6.96 %. Found: C, 65.63; H, 3.55; N, 6.95 %; FTIR (KBr, cm⁻¹): 3250–3000 (OH), 1583 (C=N), 1030 (N–O); ¹H-NMR (400 MHz, DMSO-*d*₆, δ / ppm): 13.1 (2H, *s*, OH *E*,*E*-isomer), 12.8 (2H, *s*, OH *Z*,*Z*-isomer, 7.9–7.29 (24H, *m*, benzofuran & thiophene rings H); ¹³C-NMR (100 MHz, DMSO-*d*₆, δ / ppm): 154.78, 153.43, 151.54, 145.12, 142.09, 141.86, 141.15, 133.76, 131.72,

^{*} Corresponding author. E-mail: dcoskun@firat.edu.tr

130.29, 130.15, 128.11, 128.01, 127.88, 126.94, 125.87, 123.89, 122.84, 122.22, 114.00, 112.06, 111.89, 108.13, 108.05.

1,1'-(2,5-Thiophenediyl)bis[1-(2-benzofuranyl)methanone], 1,1'-bis(O-benzoyloxime) (4a). Yield: 69 %, 0.10 g; m.p.: 167-168 °C; Anal. Calcd. for C36H22N2O6S: C, 70.81; H, 3.63; N, 4.59 %. Found: C, 70.85; H, 3.68; N, 4.61 %; FTIR (KBr, cm⁻¹): 1751 (C=O), 1557 (C=N), 1050 (N-O); ¹H-NMR (400 MHz, DMSO- d_6 , δ / ppm): 8.2–7.2 (44H, *m*, benzofuran, thiophene & phenyl ring H); ¹³C-NMR (100 MHz, DMSO- d_6 , δ / ppm): 163.07 (C-13 *anti*-isomer), 162.91 (C-13 syn-isomer), 155.59 (C-9 anti-isomer), 154.77 (C-9 syn-isomer), 148.73 (C-2 anti-isomer), 148.66 (C-2 syn-isomer), 143.82 (C-12 anti-isomer), 140.67 (C-12 syn-isomer), 138.32 (C-10 anti-isomer), 135.01 (C-10 syn-isomer), 134.30 (C-11 anti-isomer), 134.02 (C-11 syn-isomer), 131.84 (C-17 anti-isomer), 131.66 (C-17 syn-isomer, 130.26 (C-14 anti-isomer), 130.02 (C-14 syn-isomer), 129.34 (C-15, C-19 anti-isomer), 129.07 (C-15, C-19 syn-isomer), 128.21 (C-16, C-18 anti-isomer), 128.08 (C-16, C-18 syn-isomer), 127.90 (C-7 anti-isomer), 127.54 (C-7 syn-isomer), 127.30 (C-4 anti-isomer), 127.18 (C-4 syn-isomer), 124.37 (C-6 anti-isomer), 124.14 (C-6 syn-isomer), 123.33 (C-5 anti-isomer), 122.70 (C-5 syn-isomer), 113.42 (C-8 anti-isomer), 113.17 (C-8 syn-isomer), 112.06 (C-3 anti- & syn-isomer).

1,1'-(2,5-Thiophenediyl)bis[*1-(2-benzofuranyl)methanone*], *1,1'-bis*[O-(2*thienylcarbonyl)oxime*] (*4b*). Yield: 75 %, 0.11 g; m.p.: 174–175 °C; Anal. Calcd. for C₃₂H₁₈N₂O₆S₃: C, 61.72; H, 2.91; N, 4.50 %. Found: C, 61.75; H, 2.92; N, 4.55 %; FTIR (KBr, cm⁻¹): 1744 (C=O), 1553 (C=N), 1046 (N–O); ¹H-NMR (400 MHz, DMSO-*d*₆, δ / ppm): 7.33–8.15 (34 H, *m*, benzofuran ring H and others of the thiophene ring), 7.32 (1H, *dd*, *J* = 5.1 Hz & 3.5 Hz, H_a at thiophene ring for *amphi*-isomer), 7.14 (1H, *dd*, *J* = 5.8 Hz & 3.6 Hz, H_a⁻¹ proton at thiophene ring for *amphi*-isomer); ¹³C-NMR (100 MHz, DMSO-*d*₆, δ / ppm): 158.64, 155.57, 154.80, 148.90, 148.76, 148.72, 148.55, 148.51, 143.59, 140.34, 137.92, 136.41 136.36, 136.26, 136.22, 136.06, 135.94, 135.86, 135.73 134.69, 133.94, 133.77, 132.40, 131.52, 130.25, 130.20, 129.87, 129.42, 129.35, 129.17, 128.44, 128.34, 127.66, 127.58, 127.39, 124.67, 124.61, 124.44, 124.38, 123.63, 123.57, 123.05, 117.20, 116.94, 113.97, 113.73, 112.45, 112.33.

1, *1'*-(2, 5-*Thiophenediyl*)*bis*[*1*-(2-*benzofuranyl*)*methanone*], *1*, *1'*-*bis*(O-2-*furoyloxime*) (4c). Yield: 67 %, 0.10 g; m.p.: 162–163 °C; Anal. Calcd. for $C_{32}H_{18}N_2O_8S$: C, 65.08; H, 3.07; N, 4.74 %. Found: C, 65.05; H, 3.11; N, 4.71 %; FTIR (KBr, cm⁻¹): 1754 (C=O), 1575 (C=N), 1059 (N–O); ¹H-NMR (400 MHz, DMSO-d₆, δ / ppm): 8.25–7.30 (32H, *m*, benzofuran ring H, thiophene ring H and others of the furan ring), 6.87 (2H, *s*, H_b at furan ring, % 41, *anti*-isomer), 6.82 & 6.63 (2H, 2×*s*, H_a¹ & H_a at furan ring, 59 %, *amphi*-isomer); ¹³C-NMR (100 MHz, DMSO-*d*₆, δ / ppm): 155.54, 155.50, 154.95, 154.88, 154.86, 154.60, 154.58 149.71, 149.65, 148.93, 148.89, 148.87, 148.67, 148.47, 143.39, 143.37,

COSKUN, GUR and COSKUN

141.97, 141.93, 141.83, 141.55, 140.45, 137.62, 135.90, 134.79, 134.24, 133.77, 132.44, 131.45 128.55, 128.44, 127.64, 127.53, 124.68, 124.63, 124.43, 123.74, 123.68, 123.04, 121.19, 121.04, 117.82, 117.56, 113.77, 113.54, 113.43, 113.16, 112.45, 112.31.

1,1'-(2,5-Thiophenediyl)bis[1-(2-benzofuranyl)methanone], 1,1'-bis/O-(4--methoxybenzoyl) oxime] (4d). Yield: 76 %, 0.12 g; m.p.: 127-128 °C; Anal. Calcd. for C₃₈H₂₆N₂O₈S: C, 68.05 ; H, 3.91 ; N, 4.18 %. Found: C, 68.09 ; H, 3.90; N, 4.21 %; FTIR (KBr, cm⁻¹): 1743 (C=O), 1605 (C=N), 1049 (N-O); ¹H--NMR (400 MHz, DMSO- d_6 , δ / ppm): 8.14–7.77 (20H, respectively, 15H, m, H-19 anti-isomer, H-12 anti-isomer, H-19 syn-isomer, H-5 anti-isomer, H-12 synisomer, H-5 svn-isomer, H-3 anti- & svn-isomer), 7.61-7.52 (m, 12H, respectively, H-8 anti- & syn-isomer, H-7 anti-isomer, H-7 syn-isomer, H-6 anti- & syn--isomer, 7.15 (4H, d, J = 8.4 Hz, H-16, H-18, 61 % anti-isomer, 6.83 (4H, d, J = = 8.4 Hz, H-16, H-18, 39 % syn-isomer), 3.87 (6H, s, OCH₃, 61 % anti-isomer), 3.75 (6H, s, OCH₃, 39 % syn-isomer); ¹³C-NMR (100 MHz, DMSO- d_6 , δ / / ppm): 164.35 (C-13 anti-isomer), 164.17 (C-13 syn-isomer), 162.72 (C-17 anti-& syn-isomer), 155.49 (C-9 anti-isomer), 154.81 (C-9 syn-isomer), 148.81 (C-2 anti-isomer), 148.51 (C-2 syn-isomer), 144.80 (C-12 anti-isomer), 143.87 (C-12 syn-isomer), 140.60 (C-10 anti & syn-isomer), 134.57 (C-11 anti-isomer), 134.11 (C-11 syn-isomer), 132.59 (C-15, C-19 anti-isomer), 132.35 (C-15, C-19 syn-isomer), 128.35 (C-7 anti-isomer), 127.70 (C-7 syn-isomer), 127.54 (C-4 anti-isomer), 127.46 (C-4 syn-isomer), 124.64 (C-6 anti-isomer), 124.36 (C-6 syn-isomer), 123.64 (C-5 anti-isomer), 122.99 (C-5 syn-isomer), 119.98 (C-14 anti-isomer), 119.76 (C-14 syn-isomer), 115.04 (C-16, C-18 anti-isomer), 114.69 (C-16, C-18 syn-isomer), 113.48 (C-8 anti-isomer), 113.36 (C-8 syn-isomer), 112.38 (C-3, anti-isomer), 112.31 (C-3 syn-isomer), 56.17 (OCH₃, anti-isomer), 56.02 (OCH₃, syn-isomer); HMBC (400 MHz): OCH₃ (C-17), 16-H, 18-H (14-C), 6-H (7-C, 4-C), 7-H (9-C, 5-C), 8-H (9-C, 7-C, 4-C, 2-C), 3-H (7-C, 6-C, 4-C), 5-H (9-C, 4-C), 15-H, 19-H (17-C, 13-C), 12-H (11-C),

1,1'-(2,5-thiophenediyl)bis[1-(2-benzofuranyl)methanone], 1,1'-bis[O-(4ethenylphenyl)methyloxime] (4e). Yield: 62 %, 0.10 g; m.p.: 104–105 °C; Anal. Calcd. for C₄₀H₃₀N₂O₄S: C, 75.69; H, 4.76; N, 4.41 %. Found: C, 75.74; H, 4.71; N, 4.42 %; FTIR (KBr, cm⁻¹): 1627 (C=C stretching), 1553 (C=N), 1000 (N–O); ¹H-NMR (400 MHz, DMSO- d_6 , δ / ppm): 7.85–7.25 (*m*, 40H, benzofuran ring, thiophene ring and phenyl ring protons), 6.74–6.70 (*m*, 4H, C=C–H_a protons), 5.86–5.78 (*m*, 4H, C=C–H_b protons), 5.47 (*s*, 4H, OCH₂ protons, 31 % (anti-isomer)), 5.40 (*s*, 4H, OCH₂ protons, 69 % (syn-isomer)), 5.35–5.24 (4H, *m*, C=C–H_c); ¹³C-NMR (100 MHz, DMSO- d_6 , δ / ppm): 154.91 (C-9 anti-isomer), 153.65 (C-9 syn-isomer), 150.08 (C-2 anti-isomer), 149.97 (C-2 syn-isomer), 144.33 (C-12 anti-isomer), 142.77 (C-12 syn-isomer), 137.45 (C-17 syn-isomer), 137.03 (C-14

anti-isomer), 136.95 (C-14 *syn*-isomer), 136.76 (C-20 *anti*-isomer), 136.70 (C-20 *syn*-isomer), 134.01 (C-11 *anti*-isomer), 133.20 (C-11 *syn*-isomer), 131.69 (C-15, C-19 *anti*-isomer), 130.68 (C-15, C-19 *syn*-isomer), 129.26 (C-16, C-18 *anti*-isomer), 128.97 C-16, C-18 *syn*-isomer), 127.90 (C-7 *anti*-isomer), 127.87 (C-7 *syn*-isomer), 127.73 (C-4 *anti*-isomer), 127.49 (C-4 *syn*-isomer), 126.72 (C-21 *anti*-isomer), 126.68 (C-21 *syn*-isomer), 124.29 (C-6 *anti*-isomer), 124.05 (C-6 *syn*-isomer), 123.10 (C-5 *anti*-isomer), 122.44 (C-5 *syn*-isomer), 112.17 (C-8 *anti*-isomer), 112.01 (C-8 *syn*-isomer), 109.62 (C-3 *anti*-isomer), 109.56 (C-3 *syn*-isomer), 77.60 (C-13 *anti*-isomer), 77.41 (C-13 *syn*-isomer).

Fig. S-1. a) ¹H-NMR and b) ¹³C-NMR spectra of compound **1**.

COSKUN, GUR and COSKUN

Fig. S-4. a) ¹H-NMR and b) ¹³C-NMR spectra of compound **4a**.

COSKUN, GUR and COSKUN 0 ppm 1.11 (a) 158.64 155.557 154.80 148.90 148.72 148.72 148.55 148.55 148.55 148.55 148.55 148.55 148.55 143.59 140.34 140.34 137.92 131.52 130.25 130.25 130.25 129.42 129.42 129.45 129.45 129.45 129.45 127.58 12 170 160 150 140 130 120 110 100 90 f1 (ppm) 210 200 -10 (b)

Fig. S-5. a) ¹H-NMR and b) ¹³C-NMR spectra of compound 4b.

Fig. S-7. a) ¹H-NMR, b) ¹³C-NMR, c) HMBC and d) HSQC spectra of compound 4d.

