SUPPLEMENTARY MATERIAL TO

Prediction of excess molar volumes of binary mixtures by Prigogine–Flory–Patterson (PFP) and extended real association solution (ERAS) models

IVONA R. RADOVIĆ, NIKOLA D. GROZDANIĆ, BOJAN D. DJORDJEVIĆ, SLOBODAN P. ŠERBANOVIĆ and MIRJANA LJ. KIJEVČANIN*

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia

TABLE S-I. Parameters of the pure components used in PFP and ERAS models calculations at 298.15 K

<table>
<thead>
<tr>
<th>Subsstance</th>
<th>K</th>
<th>$\alpha \times 10^{12}$</th>
<th>$\kappa \times 10^{10}$</th>
<th>P^*</th>
<th>V^*</th>
<th>Δh^*</th>
<th>Δv^*</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol1</td>
<td>986</td>
<td>11.89</td>
<td>11.92</td>
<td>443.6</td>
<td>32.13</td>
<td>–25.1</td>
<td>–5.6</td>
<td>16.49</td>
</tr>
<tr>
<td>Ethanol2</td>
<td>317</td>
<td>11.20</td>
<td>11.53</td>
<td>411.8</td>
<td>46.90</td>
<td>–25.1</td>
<td>–5.6</td>
<td>15.43</td>
</tr>
<tr>
<td>Propan-1-ol2</td>
<td>197</td>
<td>10.20</td>
<td>10.06</td>
<td>414.1</td>
<td>61.10</td>
<td>–25.1</td>
<td>–5.6</td>
<td>14.90</td>
</tr>
<tr>
<td>Butan-1-ol2</td>
<td>175</td>
<td>9.32</td>
<td>9.42</td>
<td>422.7</td>
<td>75.70</td>
<td>–25.1</td>
<td>–5.6</td>
<td>14.56</td>
</tr>
<tr>
<td>Butan-2-ol2</td>
<td>68</td>
<td>10.30</td>
<td>10.40</td>
<td>388.7</td>
<td>75.40</td>
<td>–25.1</td>
<td>–5.6</td>
<td>14.07</td>
</tr>
<tr>
<td>Pentan-1-ol3</td>
<td>153</td>
<td>9.05</td>
<td>8.84</td>
<td>411.0</td>
<td>89.76</td>
<td>–25.1</td>
<td>–5.6</td>
<td>14.58</td>
</tr>
<tr>
<td>Acetonitrile4</td>
<td>0</td>
<td>11.10</td>
<td>11.70</td>
<td>408.0</td>
<td>42.20</td>
<td>–13.2</td>
<td>–2.8</td>
<td>15.19</td>
</tr>
<tr>
<td>Hexan-1-amine5</td>
<td>0.874</td>
<td>10.68</td>
<td>9.30</td>
<td>495.0</td>
<td>106.87</td>
<td>–13.2</td>
<td>–2.8</td>
<td>0</td>
</tr>
<tr>
<td>Benzene6</td>
<td>0.6</td>
<td>12.18</td>
<td>9.66</td>
<td>626.3</td>
<td>69.26</td>
<td>–15.0</td>
<td>0</td>
<td>12.43</td>
</tr>
<tr>
<td>Chlorobenzene7</td>
<td>0.8</td>
<td>9.91</td>
<td>7.65</td>
<td>611.0</td>
<td>82.26</td>
<td>–3.5</td>
<td>–3.0</td>
<td>12.34</td>
</tr>
</tbody>
</table>

TABLE S-II. Interactional parameters, χ_{12}, and contributions of the PFP theory, interactional, free volume and pressure contribution P^* for binary mixtures at $T = 298.15$ K

<table>
<thead>
<tr>
<th>Mixture</th>
<th>χ_{12}</th>
<th>Interactional</th>
<th>Free volume</th>
<th>P^*</th>
<th>P^* effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol+benzene</td>
<td>–1.51</td>
<td>–0.01208</td>
<td>–0.00025</td>
<td>0.01210</td>
<td></td>
</tr>
<tr>
<td>Ethanol+benzene</td>
<td>–7.77</td>
<td>–0.08232</td>
<td>–0.01058</td>
<td>0.10101</td>
<td></td>
</tr>
<tr>
<td>Propan-1-ol+benzene</td>
<td>–6.87</td>
<td>–0.08524</td>
<td>–0.04066</td>
<td>0.21342</td>
<td></td>
</tr>
<tr>
<td>Butan-1-ol+benzene</td>
<td>–1.74</td>
<td>–0.02428</td>
<td>–0.07624</td>
<td>0.29901</td>
<td></td>
</tr>
<tr>
<td>Butan-2-ol+benzene</td>
<td>25.36</td>
<td>0.35358</td>
<td>–0.03830</td>
<td>0.17076</td>
<td></td>
</tr>
<tr>
<td>Methanol+chlorobenzene</td>
<td>–213.72</td>
<td>–1.55626</td>
<td>–0.02805</td>
<td>–0.09270</td>
<td></td>
</tr>
<tr>
<td>Ethanol+chlorobenzene</td>
<td>–18.62</td>
<td>–0.18219</td>
<td>–0.01087</td>
<td>–0.07843</td>
<td></td>
</tr>
<tr>
<td>Propan-1-ol+chlorobenzene</td>
<td>–15.05</td>
<td>–0.17473</td>
<td>–0.00051</td>
<td>–0.01834</td>
<td></td>
</tr>
</tbody>
</table>

* Corresponding author. E-mail: mirjana@tmf.bg.ac.rs
Supplementary Material

Table S-II. Continued

<table>
<thead>
<tr>
<th>Mixture</th>
<th>χ_{12} / J cm$^{-3}$</th>
<th>Interactional Free volume P^* effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butan-1-ol+chlorobenzene</td>
<td>-12.12</td>
<td>-0.15616</td>
</tr>
<tr>
<td>Butan-2-ol+chlorobenzene</td>
<td>11.49</td>
<td>0.15262</td>
</tr>
<tr>
<td>Pentan-1-ol+chlorobenzene</td>
<td>-9.98</td>
<td>-0.14546</td>
</tr>
<tr>
<td>Butan-1-ol+n-heptane</td>
<td>-19.79</td>
<td>0.40173</td>
</tr>
<tr>
<td>Butan-2-ol+n-heptane</td>
<td>35.46</td>
<td>0.72049</td>
</tr>
<tr>
<td>Butan-1-ol+hexylamine</td>
<td>-7.30</td>
<td>-1.15015</td>
</tr>
<tr>
<td>Methanol+acetonitrile</td>
<td>-18.84</td>
<td>-0.15338</td>
</tr>
<tr>
<td>Ethanol+acetonitrile</td>
<td>-3.13</td>
<td>-0.03198</td>
</tr>
</tbody>
</table>

Table S-III. ERAS parameters for binary mixtures at atmospheric pressure and 298.15 K

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Δv_{AB} / cm3 mol$^{-1}$</th>
<th>χ_{AB} / J cm$^{-3}$</th>
<th>K_{AB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol+benzene</td>
<td>-6.68</td>
<td>-12.63</td>
<td>2.64</td>
</tr>
<tr>
<td>Ethanol+benzene</td>
<td>-5.74</td>
<td>10.12</td>
<td>179.13</td>
</tr>
<tr>
<td>Propan-1-ol+benzene</td>
<td>-6.00</td>
<td>17.92</td>
<td>121.92</td>
</tr>
<tr>
<td>Butan-2-ol+benzene</td>
<td>-4.75</td>
<td>6.53</td>
<td>22.16</td>
</tr>
<tr>
<td>Methanol+chlorobenzene</td>
<td>-9.27</td>
<td>-25.41</td>
<td>3.44</td>
</tr>
<tr>
<td>Ethanol+chlorobenzene</td>
<td>-4.19</td>
<td>-54.56</td>
<td>33.48</td>
</tr>
<tr>
<td>Propan-1-ol+chlorobenzene</td>
<td>-3.68</td>
<td>-61.65</td>
<td>28.61</td>
</tr>
<tr>
<td>Butan-1-ol+chlorobenzene</td>
<td>-3.38</td>
<td>-67.85</td>
<td>43.87</td>
</tr>
<tr>
<td>Butan-2-ol+chlorobenzene</td>
<td>-3.55</td>
<td>-36.18</td>
<td>16.79</td>
</tr>
<tr>
<td>Pentan-1-ol+chlorobenzene</td>
<td>-3.82</td>
<td>-52.24</td>
<td>23.80</td>
</tr>
<tr>
<td>Butan-1-ol+n-heptane</td>
<td>-3.28</td>
<td>7.08</td>
<td>22.72</td>
</tr>
<tr>
<td>Butan-2-ol+n-heptane</td>
<td>-2.73</td>
<td>7.21</td>
<td>22.87</td>
</tr>
<tr>
<td>Butan-1-ol+hexylamine</td>
<td>-12.06</td>
<td>56.44</td>
<td>498.5</td>
</tr>
<tr>
<td>Methanol+acetonitrile</td>
<td>-5.22</td>
<td>-14.86</td>
<td>27.07</td>
</tr>
<tr>
<td>Ethanol+acetonitrile</td>
<td>-5.29</td>
<td>13.25</td>
<td>13.25</td>
</tr>
<tr>
<td>Hexan-1-amine+n-heptane</td>
<td>-0.50</td>
<td>16.64</td>
<td>-0.51</td>
</tr>
</tbody>
</table>

References
1. M. Bender, A. Heintz, Fluid Phase Equilib. 89 (1993) 197