

J. Serb. Chem. Soc. 83 (9) S288-S293 (2018)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO A DFT study of the chemical reactivity of thiobencarb and its oxidized derivatives in the aqueous phase

LUIS HUMBERTO MENDOZA-HUIZAR*

Universidad Autónoma del Estado de Hidalgo, Academic Area of Chemistry, Carretera Pachuca-Tulancingo Km. 4.5 Mineral de la Reforma, Hgo, Mexico

J. Serb. Chem. Soc. 83 (9) (2018) 981-993

TABLE S-I. The *xyz* coordinates of thiobencarb optimized at the wB97XD/6-311++G(2d,2p) level of theory in the aqueous phase employing the PCM solvation model

Atom	x	У	Z
Н	0.00000000	0.00000000	0.00000000
С	0.00000000	0.00000000	1.08215012
С	0.01955886	0.00000000	3.85784491
С	-1.11635737	0.46081044	1.77364562
С	1.12047642	-0.45708648	1.75880177
С	1.11524823	-0.45327124	3.14310956
С	-1.09206808	0.45499948	3.16525814
Н	1.98488356	-0.80860486	1.21478815
Н	-1.95033699	0.81092947	3.72029904
Н	0.03155678	-0.00061677	4.93785464
Cl	2.52500093	-1.02970077	4.00801831
С	-2.33104817	0.93833994	1.02860532
Н	-2.07088766	1.31157456	0.04279811
Н	-2.85431261	1.71773274	1.57501386
S	-3.46644692	-0.47784272	0.8189588
С	-4.7496949	0.33564665	-0.1632449
0	-4.63082049	1.50468968	-0.49179816
Ν	-5.79645533	-0.44100483	-0.49443651
С	-6.8589914	0.13249874	-1.31807131
Н	-7.26217279	-0.67308936	-1.93134012
Н	-6.41413548	0.86260495	-1.9892733
С	-7.96161992	0.77201278	-0.4866548
Н	-8.40356021	0.05030302	0.2011689
Н	-8.75209736	1.14589339	-1.13736444
Н	-7.56946535	1.60652775	0.09362932
С	-5.95098551	-1.83049753	-0.07986993

*Corresponding author. E-mail: hhuizar@uaeh.edu.mx

S288

SUPPLEMENTARY MATERIAL

Н	-5.44003753	-1.97977984	0.86984761
Н	-7.01058844	-1.98969306	0.1218172
С	-5.45408966	-2.82399018	-1.12087262
Н	-5.98588814	-2.70043301	-2.06451023
Н	-5.61717308	-3.84333066	-0.77191393
Н	-4.38866514	-2.68957169	-1.30657985

TABLE S-II. The xyz coordinates of dechlorinated thiobencarb of	optimized at the wB97XD/6-
-311++G(2d,2p) level of theory in the aqueous phase employing t	the PCM solvation model

Atom	x	у	Ζ
Н	-2.653064	0.320674	-2.127341
С	-3.147256	0.171998	-1.175446
С	-4.419002	-0.212583	1.258197
С	-2.483928	-0.506055	-0.15617
С	-4.434899	0.652568	-0.982777
С	-5.0733	0.462301	0.235728
С	-3.132263	-0.694399	1.061984
Н	-4.940247	1.171945	-1.785802
Н	-2.626528	-1.222323	1.860985
Н	-4.911438	-0.366996	2.208727
С	-1.08526	-1.015696	-0.36702
Н	-0.878772	-1.190437	-1.418555
Н	-0.906257	-1.934468	0.184442
S	0.08908	0.250333	0.232736
С	1.63297	-0.525657	-0.300932
0	1.617085	-1.586755	-0.903688
Ν	2.754481	0.151968	0.002827
С	4.037271	-0.403687	-0.424267
Н	4.71329	0.434067	-0.592861
Н	3.892589	-0.904882	-1.377933
С	4.623292	-1.364854	0.600224
Н	4.78036	-0.86817	1.55819
Н	5.58379	-1.744749	0.252148
Н	3.953308	-2.209913	0.754452
С	2.782152	1.409139	0.741276
Н	1.942972	1.438721	1.434398
Н	3.680628	1.397446	1.358712
С	2.778441	2.633028	-0.164485
Н	3.627252	2.615111	-0.848357
Н	2.843299	3.541732	0.433524
Н	1.862702	2.6736	-0.753889
Н	-6.076521	0.836947	0.38722

S289

MENDOZA-HUIZAR

Atom	x	у	Ζ
Н	1.946046	-2.322063	-0.281924
С	2.36446	-1.327573	-0.353296
С	3.446827	1.225333	-0.534644
С	1.534819	-0.244415	-0.628186
С	3.725158	-1.146268	-0.168473
С	4.250928	0.131634	-0.261454
С	2.086623	1.02982	-0.713979
Н	4.367758	-1.988008	0.043206
Н	1.4531	1.879898	-0.928697
Н	3.874988	2.213847	-0.609559
Cl	5.969379	0.368047	-0.034787
С	0.060273	-0.445832	-0.80228
Н	-0.185527	-1.417626	-1.226185
Н	-0.398542	0.338359	-1.400553
S	-0.764896	-0.41311	0.807667
С	-2.567973	-0.764724	0.341801
0	-2.891209	-1.922288	0.481555
Ν	-3.328018	0.229078	-0.107131
С	-4.710358	-0.113039	-0.474283
Н	-5.305758	0.787183	-0.336728
Н	-5.073042	-0.861902	0.224873
С	-4.812359	-0.613784	-1.906555
Н	-4.44112	0.131576	-2.610045
Н	-5.854464	-0.819751	-2.148176
Н	-4.241239	-1.532015	-2.035983
С	-2.942506	1.630805	-0.299227
Н	-1.87151	1.709859	-0.443909
Н	-3.410266	1.951189	-1.229689
С	-3.379849	2.515261	0.857099
Н	-4.454998	2.448297	1.022137
Н	-3.136703	3.554021	0.636611
Н	-2.865806	2.223822	1.771097
0	-0.60302	0.894563	1.414035
0	-0.34129	-1.573599	1.558536

TABLE S-III. The xyz coordinates of thiobencarb sulfone optimized at the wB97XD/6--311++G(2d,2p) level of theory in the aqueous phase employing the PCM solvation model

TABLE S-IV. The xyz coordinates of dechlorinated thiobencarb sulfone optimized at the wB97XD/6-311++G(2d,2p) level of theory in the aqueous phase employing the PCM solvation model

Atom	x	У	Ζ
Н	2.796354	-2.172223	-0.410744
С	3.147173	-1.148787	-0.431248
С	4.045589	1.476884	-0.487755
С	2.24039	-0.113042	-0.638764
С	4.495005	-0.873045	-0.254062

SUPPLEMENTARY MATERIAL

4.946284	0.44024	-0.28099
2.697895	1.20169	-0.664844
5.193984	-1.68319	-0.097563
1.99643	2.009648	-0.826505
4.393069	2.500645	-0.513901
0.779279	-0.404444	-0.805908
0.588763	-1.389724	-1.226976
0.270767	0.349623	-1.403265
-0.042129	-0.416865	0.806043
-1.838743	-0.805017	0.347816
-2.143195	-1.967089	0.494431
-2.618927	0.173605	-0.10151
-3.996278	-0.194632	-0.461708
-4.606928	0.695978	-0.328374
-4.344152	-0.944774	0.243546
-4.094906	-0.706373	-1.890396
-3.736046	0.039691	-2.599541
-5.134598	-0.928541	-2.128058
-3.510902	-1.617035	-2.015518
-2.260224	1.580967	-0.304376
-1.191052	1.680545	-0.448611
-2.73288	1.884724	-1.238048
-2.714553	2.467393	0.843813
-3.788399	2.383077	1.009065
-2.489501	3.508244	0.613961
-2.19554	2.193382	1.760391
0.080228	0.886525	1.431196
0.415256	-1.574458	1.5416
5.997402	0.653712	-0.143246
	$\begin{array}{c} 4.946284\\ 2.697895\\ 5.193984\\ 1.99643\\ 4.393069\\ 0.779279\\ 0.588763\\ 0.270767\\ -0.042129\\ -1.838743\\ -2.143195\\ -2.618927\\ -3.996278\\ -4.606928\\ -4.344152\\ -4.094906\\ -3.736046\\ -5.134598\\ -3.510902\\ -2.260224\\ -1.191052\\ -2.73288\\ -2.714553\\ -3.788399\\ -2.489501\\ -2.19554\\ 0.080228\\ 0.415256\\ 5.997402\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE S-V.	The xyz	coordinates	of thioben	carb sulfoxide	optimized	at the wB97XD)/6-
-311++G(2d,2	2p) level o	f theory in th	e aqueous j	ohase employin	g the PCM	solvation model	

· · ·	•		
Atom	x	У	Z
Н	1.90487	-2.206	0.823432
С	2.336176	-1.341053	0.336558
С	3.459838	0.868304	-0.913749
С	1.520624	-0.472423	-0.3848
С	3.699438	-1.118049	0.437834
С	4.246388	-0.010648	-0.189783
С	2.096312	0.632049	-1.004755
Н	4.327474	-1.795806	0.99698
Н	1.47713	1.314586	-1.570918
Н	3.902245	1.725764	-1.399059
Cl	5.968429	0.278603	-0.069115
С	0.04427	-0.703873	-0.459115
Н	-0.212995	-1.760926	-0.444288
Н	-0.404037	-0.222023	-1.325876
S	-0.766001	0.026973	1.029965

Available on line at www.shd.org.rs/JSCS/

S291

MENDOZA-HUIZAR

С	-2.446594	-0.677468	0.56894
0	-2.526467	-1.844442	0.910336
Ν	-3.397994	0.047754	-0.005481
С	-4.69742	-0.59563	-0.229722
Н	-5.450412	0.190378	-0.209676
Н	-4.893287	-1.264984	0.604294
С	-4.74204	-1.353823	-1.547985
Н	-4.549805	-0.6886	-2.390032
Н	-5.726067	-1.800453	-1.686163
Н	-3.997662	-2.148789	-1.556255
С	-3.226844	1.400319	-0.543571
Н	-2.174559	1.580187	-0.730732
Н	-3.737771	1.419793	-1.506254
С	-3.784435	2.46923	0.382332
Н	-4.84363	2.309655	0.584466
Н	-3.673457	3.449207	-0.080991
Н	-3.243156	2.470509	1.327188
0	-0.618594	1.512416	0.912748

TABLE S-VI. The *xyz* coordinates of dechlorinated thiobencarb sulfoxide optimized at the wB97XD/6-311++G(2d,2p) level of theory in the aqueous phase employing the PCM solvation model

Atom	x	у	Ζ
Н	-2.696743	-2.068128	-0.807369
С	-3.115689	-1.199194	-0.31547
С	-4.194267	1.020344	0.950702
С	-2.283381	-0.352677	0.414637
С	-4.474081	-0.93912	-0.411372
С	-5.016474	0.173256	0.220606
С	-2.833723	0.759648	1.044975
Н	-5.110152	-1.604056	-0.979548
Н	-2.195288	1.420645	1.61654
Н	-4.611179	1.886505	1.446315
С	-0.81161	-0.619207	0.486543
Н	-0.580249	-1.682639	0.48431
Н	-0.346675	-0.137862	1.344991
S	0.010712	0.069342	-1.014687
С	1.669895	-0.695377	-0.573841
0	1.709058	-1.862291	-0.92297
Ν	2.650402	-0.005653	-0.00397
С	3.93191	-0.690116	0.200264
Н	4.707124	0.074003	0.181768
Н	4.099924	-1.355113	-0.643347
С	3.967295	-1.464941	1.509107
Н	3.796937	-0.805433	2.36034
Н	4.94159	-1.935905	1.635109
Н	3.204601	-2.242277	1.513493
С	2.526502	1.346656	0.547458

S292

SUPPLEMENTARY MATERIAL

Н	1.482752	1.554694	0.752422	
Н	3.051778	1.34278	1.502609	
С	3.100107	2.407399	-0.3779	
Н	4.152288	2.222173	-0.594386	
Η	3.02024	3.386576	0.093501	
Η	2.546266	2.429087	-1.315188	
Н	-6.076152	0.375696	0.145248	
0	-0.07283	1.560957	-0.908065	

Fig. S-1. Mapping of the electrostatic potentials evaluated at the wB97XD/6-311++G(2d,2p) level of theory employing the PCM solvation model, onto a density isosurface (value = 0.002 e/a.u.³) for a) TB, b) TBS, c) TBSu, d) DTB, e) DTBS and f) DTBSu.

Available on line at www.shd.org.rs/JSCS/