

J. Serb. Chem. Soc. 83 (5) S205-S213 (2018)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Electrochemical deposition and characterization of AgPd alloy layers

NEVENKA R. ELEZOVIĆ^{1#}, PIOTR ZABINSKI², MILA N. KRSTAJIĆ PAJIĆ^{3#}, TOMASZ TOKARSKI⁴, BORKA M. JOVIĆ^{1#} and VLADIMIR D. JOVIĆ¹*

¹Institute for Multidisciplinary Research University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia, ²AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland, ³Faculty of Technology and Metallurgy University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia and ⁴AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30,30-059 Krakow, Poland

J. Serb. Chem. Soc. 83 (5) (2018) 593-609

TABLE S-I. Electrodeposition of the AgPd alloys to $Q_d = 0.2$, 1.0 and 1.5 C cm⁻² at $\omega = 0$ rpm and different current densities (j_d) from the solution: 0.001 M PdCl₂ + 0.04 M AgCl + 0.1 M HCl + 12 M LiCl. Dissolution (ALSV) in the solution 0.1 M HCl + 12 M LiCl at $\omega = 1000$ rpm with a sweep rate of 1 mV s⁻¹; $j_L(Pd) = -59.18 \ \mu A \ cm^{-2}$

	;	$O(\mathbf{D}_{\mathbf{d}})$	$O(\Lambda q)$	n / 0/	Composition				, at.%	ó	<i>O</i> (LIP)
Sample	J_d	$Q(ru)_{ALSV}$	$Q(Ag)_{ALSV}$	η_{j} / γ_{0}	AL	SV	Х	PS	E	DS	Q(OF) _{ALSV}
	µA cili	C chi	C cm	$Q_{\rm ALSV}/Q_{\rm d}$	Pd	Ag	Pd	Ag	Pd	Ag	/0
			$Q_{\rm d}$ =	0.2 C cm	-2						
(1)AgPd1	178	0.088	0.093	90	24	76	27.4	72.6	16.2	83.8	0
(2)	296	0.059	0.139	96	12	88	_	_	_	_	15.7
(3)AgPd2	415	0.042	0.154	98	8	92	13.4	86.6	9.8	90.2	10.2
$Q_{\rm d} = 1.0 \ {\rm C \ cm}^{-2}$											
(4)	296	0.290	0.700	99	12	88	_	_	_	_	17.2
$Q_{\rm d} = 1.5 \ {\rm C \ cm^{-2}}$											
(5)	296	0.469	1.018	99	13	87	_	_	_	_	27.6

* Corresponding author. E-mail: vladajovic@imsi.bg.ac.rs

ELEZOVIĆ et al.

TABLE S-II. Electrodeposition of the AgPd alloys to the different amounts of charge (Q_d) at $j_d = -178 \ \mu\text{A cm}^{-2}$ $(j_d = 3j_L(Pd))$ and $\omega = 0$ rpm from the solution: 0.001 M PdCl₂ + 0.04 M AgCl + 0.1 M HCl + 12 M LiCl. Dissolution (ALSV) in the solution 0.1 M HCl + 12 M LiCl at $\omega = 1000$ rpm with a sweep rate of 1 mV s⁻¹. at.% of Pd and Ag, as well as Q(UP), are obtained from the ALSV responses

$Q_{\rm d}$ / C cm ⁻²	$Q(Pd)_{ALSV}$ C cm ⁻²	$Q(Ag)_{ALSV}$ C cm ⁻²	$\eta_{ m j}$ / % $Q_{ m ALSV}/Q_{ m d}$	Pd	Ag	$Q(\text{UP})_{\text{ALSV}}$ / %
0.05	0.0243	0.0191	73	38	62	0
0.1	0.043	0.043	86	33	67	0
0.2	0.097	0.088	93	35	65	0
0.4	0.176	0.206	96	30	70	16
0.6	0.312	0.267	97	37	63	23

TABLE S-III. Electrodeposition of AgPd alloys to the different amounts of charge (Q_d) at different current densities and $\omega = 1000$ rpm from the solution: 0.001 M PdCl₂ + 0.04 M AgCl + 0.1 M HCl + 12 M LiCl. Dissolution (ALSV) in the solution 0.1 M HCl + 12 M LiCl at $\omega = 1000$ rpm, with a sweep rate of 1 mV s⁻¹

	$Q_{\rm d}$	$O(\mathbf{P}d)$	$O(\Lambda q)$	n/0/2		Co	O(IID)				
Sample	С	$\mathcal{Q}(1 u)_{ALSV}$	$Q(Ag)_{ALSV}$	η_{j} /0	AL	SV	X	PS	E	DS	Q(OI)ALSV
	cm ⁻² C Cl	C chi	C chi	Q_{ALSV}/Q_d	Pd	Ag	Pd	Ag	Pd	Ag	- 70
$j_{\rm d} = -5 \text{ mA cm}^{-2}; \omega = 1000 \text{ rpm}$											
(1)	1.0	0.195	0.796	99	11	89	_	_	_	_	4
(2)	2.0	0.214	1.512	86	7	93	_	_	_	_	40
$j_{\rm d} = -7 \text{ mA cm}^{-2}; \omega = 1000 \text{ rpm}$											
(3)AgPd3	3.0	0.649	2.065	90	13.4	86.6	15.2	84.8	3.4	96.6	55

Sample AgPd1

1(2)

2.5 µm

65535

ELEZOVIĆ et al.

Full scale counts: 21656

1(2)_pt2

Weight %

	С-К	0-К	Al-K	Si-K	P-K	CI-K	Pd-L	Ag-L	Cd-L
1(2)_pt1	46.65	0.00	0.24		0.09	0.72	8.86	43.44	0.00
1(2)_pt2	12.86	0.00	0.30	0.10		3.27	2.01	81.46	0.00
Atom %									

C-K	к О-К	Al-K	Si-K	P-K	CI-K	Pd-L	Ag-L	Cd-L
1(2)_pt1 88.	.23 0.00	0.20		0.07	0.46	1.89	9.15	0.00
1(2)_pt2 54.	.87 0.00	0.58	0.18		4.72	0.97	38.69	0.00

S208

SUPPLEMENTARY MATERIAL

Sample AgPd2

2(1)

2.5 µm

Image Name: 2(1) Image Resolution: 512 by 384 Image Pixel Size: 0.03 μm Acc. Voltage: 20.0 kV Magnification: 10000

S209

S210

ELEZOVIĆ et al.

Full scale counts: 8426

Full scale counts: 22314

2(1)_pt3

SUPPLEMENTARY MATERIAL

Weight %

	С-К	0-К	Al-K	S-K	Cl-K	Pd-L	Ag-L	Cd-L	
2(1)_pt1	30.83	1.40	0.37		1.13	6.59	59.69	0.00	
2(1)_pt2	52.32	0.00	0.20	0.08	1.33	4.20	41.86	0.00	
2(1)_pt3	4.38	2.19			4.42	1.01	87.96	0.06	
Atom %									
	С-К	0-К	Al-K	S-K	CI-K	Pd-L	Ag-L	Cd-L	
2(1)_pt1	77.42	2.65	0.42		0.96	1.87	16.69	0.00	
2(1)_pt2	90.17	0.00	0.16	0.05	0.78	0.82	8.03	0.00	
2(1)_pt3	25.12	9.41			8.58	0.65	56.19	0.03	

Sample AgPd3

3(2) 2.5 µm

65535

Image Name:3(2)Image Resolution:5Image Pixel Size:0Acc. Voltage:20.0 kVMagnification:10000 512 by 384 0.03 μm S212

ELEZOVIĆ et al.

Full scale counts: 7136

Full scale counts: 7824

SUPPLEMENTARY MATERIAL

Weight %

	С-К	0-К	Al-K	CI-K	Pd-L	Ag-L	Cd-L
3(2)_pt1	1.08	0.38	0.66	0.00	1.44	86.33	10.11
3(2)_pt2	1.13	0.52	0.61	0.00	3.14	83.40	11.19
3(2)_pt3	2.29	0.56	0.83	0.00	3.48	82.56	10.29
Atom %							
	С-К	0-К	Al-K	CI-K	Pd-L	Ag-L	Cd-L
3(2)_pt1	8.66	2.30	2.33	0.00	1.30	76.78	8.63
3(2)_pt2	8.98	3.09	2.15	0.00	2.81	73.50	9.47
3(2)_pt3	16.62	3.07	2.68	0.00	2.85	66.79	7.99

S213