This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

Please cite this article as N. A. E-S. Sharaf El-Din, J. Serb. Chem. Soc. (2019) https://doi.org/10.2298/JSC180530001S

This “raw” version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors’ review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.
3,4-Dihydro-2H-1,3-benzoxazines and their oxo-derivatives - chemistry and bioactivities

NABAWEYA ABD EL-SALAM SHARAF EL-DIN*

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, 31527, Tanta, Egypt

(Received 30 May 2018; revised 3 December 2018; accepted 11 January 2019)

Abstract: 3,4-Dihydro-2H-1,3-benzoxazines derivatives are a significant class of heterocycles with particular awareness due to their remarkable biological activities in humans, plants and animals, and also their natural occurrence. Alteration in the benzoxazines skeleton and their comparative chemical simplicity and accessibility, make these compounds suitable sources of other bioactive compounds, resulting in the discovery of a wide set of these compounds that have broad biological activity, such as antifungal, antibacterial, anti-HIV, anticancer, anticonvulsant, anti-inflammatory, etc. Subsequently, this review gives herein a brief overview of the chemistry and bioactivities of derivatives of 3,4-dihydro-2H-1,3-benzoxazines monomers and their oxo-derivatives.

Keywords: benzo-1,3-oxazines; synthesis; reactions; biological activities

INTRODUCTION

Benzo-1,3-oxazine is a bicyclic skeleton in which an oxazine ring is annulated with a benzene ring. A number of isomeric structures are possible depending on the positions and the degree of oxidation of the ring system. The two isomeric structures 1 and 2 (2H- and 4H-benz-1,3-oxazine) in addition to 2,3-dihydro-2H-benz-1,3-oxazine) (3) are illustrated in Fig. 1.1 This survey is focused on 3,4-dihydro-2H-benz-1,3-oxazines and their oxo-derivatives.

3,4-Dihydro-2H-benz-1,3-oxazines exist in two basic conformations the semi-chair (A) and semi-boat (B) structures, as shown in Fig. 2. According to the orientation of the substituent at the nitrogen atom, so each conformation exists in another two forms.2

On the other hand, the dihydro-1,3-benzoxazine monomers are synthesized not only by traditional Mannich condensation methods3,4 of phenol, amine, and formaldehyde, but also by cyclo-addition5,6 and other methods. Interestingly,

*Corresponding author E-mail: nsharafd@gmail.com
https://doi.org/10.2298/JSC180530001S
several works have been performed to investigate the reactant ratios,\textsuperscript{7,8} reactant structures,\textsuperscript{9,10} solvent effect,\textsuperscript{11} temperatures of reaction,\textsuperscript{12} and reaction duration.\textsuperscript{13}

![Chemical structures of 1,3-benzoxazines.](image1)

Fig. 1. Chemical structures of 1,3-benzoxazines.

All previous studies\textsuperscript{14,15} demonstrated that these factors play an important role in the synthesis and the properties of benzoxazine (such as, low yield and poor purity), resulting in limitation of the development of benzoxazine chemistry. Consequently, these problems need further efforts and studies.\textsuperscript{10,16}

Furthermore, the benzoxazine nucleus is not only present in many pharmacologically active molecules, medicinally significant derivatives and natural products, but also they have been used as intermediates for the synthesis of other heterocyclic-scaffold bioactive compounds.\textsuperscript{17} Furthermore, several 1,3-benzoxazines (Fig. 3) show interesting biological and pharmaceutical properties.\textsuperscript{18,19} Moreover, these derivatives are very valuable in the chemistry of natural products due to the formation of acetal-glycosides in plant,\textsuperscript{20} which act as the self-resistance factor of a plant towards insects, pests, fungi and other focused on 3,4-dihydro-2\textit{H}-1,3-benzoxazine monomers and their one-derivative chemistry and bioactivities.

![Conformations of 3,4-dihydro-2\textit{H}-benz-1,3-oxazines.](image2)

Fig. 2. Conformations of 3,4-dihydro-2\textit{H}-benz-1,3-oxazines.\textsuperscript{2}

![Benzoxazines with biological and pharmaceutical properties.](image3)

Fig. 3. 1,3-Benzoxazines with biological and pharmaceutical properties.
2. SYNTHESIS OF 1,3-BENZOXAZINE DERIVATIVES

2.1. Synthesis of 3,4-dihydro-2H-1,3-benzoxazines

3,4-Dihydro-2H-1,3-benzoxazines have been synthesized through the one-pot Mannich reaction of a substituted phenol with formaldehyde and aliphatic or aromatic monoamines/diamines (Scheme 1).\(^{22}\) The importance of the role of the basicity of the amine on the rate of the reaction was found.\(^{13,23}\) Thus a weakly basic amine will react faster than a strongly basic amine.\(^{24}\)

![Scheme 1: Synthesis of 1,3-benzoxazines by a Mannich reaction.](image)

This synthetic method could be performed either in solvent,\(^{25}\) such as dioxane/water,\(^{26}\) absolute ethanol,\(^{27,28}\) methanol,\(^{29}\) etc., or solventless.\(^{30,31}\) The use of an organic solvent increases the cost of the products and causes some environmental problems. Furthermore, the solvent residue in the products leads to problems during the handling of the benzoxazine synthesis. To overcome these drawbacks, the solventless synthesis was developed under melt condition.\(^{32}\) The reaction mechanism and kinetics of this method were suggested by Liu and Ishida for the preparation large quantities of benzoxazine monomers.\(^{24}\)

Moreover, the influence of substituent attached to phenol or aniline on the stability of the oxazine ring and the equilibrium constant has been investigated and studied in the literature.\(^{24,26}\)

In the solventless method,\(^{30,33}\) the all reactants are mixed together, heated, and maintained at above their melting point using paraformaldehyde to maintain the reaction stoichiometry.\(^{30}\) Additionally, in the case of reactants with high melting points, it is necessary to use toluene or 1,4-dioxane as solvents.\(^{34}\) Better yield and purity were obtained using two-step methods by reaction of an aliphatic amine and formaldehyde at low temperature first before adding the phenol derivative.\(^{32}\)

On the other hand, the kinetics and details of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine synthesis by the Mannich reaction were investigated.\(^{16}\) It was observed that N-hydroxymethyl aniline (HMA) is considered the key intermediate. HMA then reacts with phenol to give a second intermediate (3) that reacts with formaldehyde to form benzoxazines. However, HMA reacts with other intermediates and reactants to form byproducts, as shown in Scheme 2. Thus, this research observed that the formation and the mechanism of benzoxazines synthesis besides the formation of byproducts will need further investigations.\(^{16}\)
In addition, due to the presence of water, polar solvents and the high temperatures used, the formation of oligomers are considered the main drawbacks in benzoxazine synthesis by the Mannich reaction.\textsuperscript{10,32}

To minimize the previous drawbacks in the synthetic methods to 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine monomers \textit{via} Mannich condensation, numerous efforts have focused on two approaches: the use of a suitable synthetic method or the use a catalyst.

Herein, the different synthetic approaches for these derivatives have been studied as described in Schemes 3a to 3c.\textsuperscript{35}

From the previous, there are three general synthetic methods for the preparation of benzoxazine monomers, one-pot, two-step and three-step Mannich reactions.

\textbf{Scheme 3a. Illustration of the one-pot synthetic method for the preparation of benzoxazine.}
Scheme 3b. Illustration of the two-pot synthetic method for the preparation of benzoxazine.

Scheme 3c. Illustration of the three-pot synthetic method for the preparation of benzoxazine.
2. 1. 1. One-step Mannich condensation

Traditionally, benoxazine synthesis was realized using the one-pot multicomponent reactions of Bruke. This method has been generalized and studied because of its simplicity and diversity of substituents on both the phenol and the amine. For example, nitro, halogen, cyano, aldehyde, carboxy, alkenyl, maleimide groups, etc. could be adopted onto benoxazine by using functional phenols/amines, leading to the production of a large variety of functional benoxazines. Furthermore, by the use of bisphenol and/or diamine compounds, bifunctional benoxazines could be obtained. Another advantage of the solvent-free, one-pot method is that it avoids solvent residues, which may cause serious defects during processing, saves on solvent and its recovery costs, and there is no worry about the solubility of raw materials in an organic solvent. As example, compound 1 was prepared in a one-step Mannich reaction.

Moreover, one-pot reactions are simple, easy to handle and avoid isolation and purification of intermediates, maximizes the yield, minimize solvent, and enhance the greenness of the transformations. Consequently, they have become a popular tool in the synthesis of complex heterocyclic molecules.

Fig. 4. Structure of compound 1.

A modification of the one-pot Mannich reaction was developed via the oxidative hydroxylation of arylboronic acids and subsequent coupling with paraformaldehyde and amines in good to excellent yields with a variety of functional groups, Scheme 4.

Scheme 4. Synthesis of 1,3-benoxazines using arylboronic acids.
The synthesis of dihydro-1,3-benzoxazines were obtained via one-pot condensation of α- or β-naphthol, aniline and formaldehyde using thiamine hydrochloride (VB₁) as catalyst.⁴⁷

The preparation of a novel tetrafunctional oxazine monomer (2) containing 1,3-benzoxazine and fluorene-oxazine was performed through a one-step Mannich condensation reaction.⁴⁸

Additionally, benzoxazine monomers were synthesized in high purity and good yield through one-pot reactions from the reaction of bisphenol with paraformaldehyde and isomeric butylamines, as indicated in Scheme 5.⁴⁹
Scheme 5. Synthesis of benzoxazines from bisphenol.

The Brønsted acidic ionic liquid BF$_4$ was used as a nonvolatile ecofriendly solvent and catalytic reagent for the one-pot green synthesis of isoxazolyl-3,4-dihydro-2$H$-1,3-benzoxazines (3) was studied. This method afforded excellent yields in short reaction times, and avoids multistep synthesis.$^{50}$

Moreover, 3,4-dihydro-2$H$-1,3-benzoxazines were synthesized in one-pot by the directed ortho-lithiation of phenols.$^{51}$

2. 1. 2. Two-step Mannich condensation

On the other hand, the two-step synthesis, first described by Holly and Cope,$^{52}$ is performed in solvent. The reaction by this method proceeds by first adding amine to formaldehyde at lower temperatures to form an $N,N$-dihydroxymethylamine, which then reacts with the labile hydrogen of the hydroxyl group on the ortho-position of the phenol at an elevated temperature to form the oxazine ring.$^{53}$ The slow reaction rate and the large amount of solvent
required for the synthesis due to the poor solubility of the reacting compounds are considered the disadvantages of this procedure, in addition to increasing the costs of the products and creating environmental problems. To overcome these drawbacks, the solvent-free synthesis was developed.\textsuperscript{32}

Thereafter, the two-step reaction involved the formation of perhydrotriazine (intermediate) in the reaction of formaldehyde with benzylamine. This intermediate reacts with phenol and formaldehyde in acidic condition to give benzoxazines (Scheme 6).\textsuperscript{13} This method has been generalized with the proposed mechanism in the literature.\textsuperscript{10}

Additionally, another way was reported through the formation of bis(alkoxymethyl)alkylamine as intermediate, which was obtained in the reaction of alkyl amine with alcohol (Scheme 7).\textsuperscript{54}

Notably, these methods cannot be used in the presence of a primary amine similar as one-pot methods. However, these methods were enabled in cases of reactive phenolic compounds, such as hydroxybenzaldehyde and hydroxybenzoic acid, allowing a primary amine to be used. Due to the diversity of substituents on both the phenol and the amine, a large variety of functional benzoxazines could be produced.

In the synthesis of benzoxazine in a two-step reaction, the first step involved the formation of 1,3,5-tripentafluorophenylperhydro-1,3,5-triazine, then the reaction between the acid-promoted cleavage of the perhydrotriazine with substituted phenol and formaldehyde occurred. The latter step is considered the rate determining step reaction.\textsuperscript{55}

![Scheme 6. Synthesis of benzoxazines with 1,3,5-hexahydrotriazine.](image-url)
Scheme 7. Synthesis of benzoxazines with bis(alkoxymethyl)alkylamine.

Furthermore, 1,3,5-triphenylhexahydro-1,3,5-triazine (4) was formed as intermediate during the solventless synthesis of benzoxazines. This triazine could be used as an amine source instead of the direct use of a primary amine.10,56

![Fig. 7. Structure of compound 4.](image)

2. 1. 3. Three-step Mannich reaction

Burke suggested a reaction pathway for a Mannich condensation, i.e., initially, \(N,N\)-dihydroxymethylamine (1) is formed that is then converted into a \(N\)-hydroxymethyl Mannich base (2), which finally reacts with phenol to generate 1,3-benzoxazines (Scheme 8).42,57,58

Moreover, a three-step method was developed by imine formation between salicylaldehyde and the selected primary amine as first step. The second step is the reduction of this imine into secondary amine and finally, ring closure using formaldehyde.59

![Scheme 8. Three-step Mannich reaction for the synthesis of 1,3-benzoxazines.](image)

The advantage of this method is the ability to control each step and the usage of amines that are incompatible in classical methods. Furthermore, the use of this method avoids the formation of undesirable oligomeric or polymeric species, thus leading to a simple workup and improving the yield and purity of the final
product. As an example, salicylaldehyde or 4-aminophenol can be used as the phenol or amine source, respectively. In addition, free phenol-containing benzoxazines can also be synthesized easily by this method. Moreover, asymmetrical benzoxazine derivatives can easily be obtained by choosing a suitable salicylaldehyde.

Furthermore, 1,3-benzoxazine derivatives were formed via dehydration of methylene glycol to formaldehyde, which reacts with a Mannich base as indicated in Scheme 9.

Scheme 9. Three-step Mannich reaction for the synthesis of 1,3-benzoxazines.

Salicylaldehyde was condensed with primary aromatic amines to give imine compounds which on reduction with NaBH$_4$, yielded intermediate 5 at room temperature. Compound 5 subsequently undergoes ring-closure reaction with paraformaldehyde in toluene at 60 °C to give benzoxazine monomer by a three-pot method.

Furthermore, the kinetics of the reaction between 2-phenylaminomethylphenol (phenol-aniline based Mannich base) and formaldehyde to benzoxazine has been studied. The results showed that the reaction occurs rapidly and the reverse reaction occurs via hydrolysis of the benzoxazine to the Mannich base.

Moreover, a di-functional benzoxazine was prepared in the reaction of bis(ortho-hydroybenzylamino)ethane (6) with formaldehyde. The advantage of this synthesis is the flexible substitution of functional groups on the oxazine ring. In addition, another substitution on the oxazine ring could be achieved by ring closure of salicylaldehyde with various aldehydes (aliphatic or aromatic) instead of...
Moreover, the oxazine ring could be closed by the reaction of salicylaldehyde not only with aldehydes but also with methylene bromide. Furthermore, this method enhances the formation of benzoxazine monomer only because its intramolecular cyclization permits the reaction conditions to moderate, leading to the minimization of side reactions caused by high temperatures. However, in the case of a one-pot method, sometimes relatively high temperature are required to close the oxazine ring leading to the formation of undesirable oligomeric or polymeric species.

Fig. 9. Structure of compound 6.

On the other hand, for further limitation on the drawbacks of Mannich methods, many catalysts have been used for the growing number of benzoxazines syntheses. As example, 2,3-diyaryl-3,4-dihydro-2H-1,3-benzoxazines have been prepared in high yields from o-arylaminomethylphenols and aromatic aldehydes in the presence of SnCl₄. In addition, the condensation of hexa(methoxymethyl)melamine with mono- or di-substituted phenols in p-xylene catalyzed by di-nonylnaphthalenedisulfonic acid gave 1,3-benzoxazines. In addition, 3,4-dihydro-1,3-benzoxazines were synthesized by directed ortholithiation of phenols using ZnBr₂ as catalyst. Furthermore, the Bronsted acidic ionic liquid BF₄ has been used as a nonvolatile, ecofriendly solvent, and catalyst for the one-pot synthesis of substituted isoxazolyl-1,3-benzoxazines. The reaction gave excellent yields in short reaction times and avoided multistep synthesis. The recyclability of the catalyst makes the reaction economically and potentially suitable for commercial applications. Moreover, thiamine hydrochloride (VB₁) was used as a versatile biodegradable and reusable catalyst in water as a universal solvent for the synthesis of benzoxazines. Finally, I₂/H₂O₂-promoted intramolecular C–O bond-formation reaction of a variety of 1-(aminoalkyl)-2-naphthols or 2-(aminoalkyl)phenols yielding the corresponding 1,3-oxazines. The reaction is simple, economic, and proceeds at room temperature in ethanol as solvent.
2. 2. Synthesis of a sulfone-scaffold benzoxazine monomer

On the other hand, the formation of byproducts (oligomers or polymers) in Mannich reactions has been considered beneficial in many industrial usages in spite of being considered a drawback in the preparation of benzoxazine monomers. Thus, 3,4-dihydro-1,3-benzoxazines can yield polymeric structures through ring-opening of the cyclic monomers. These polymeric structures are commercially important and widely applied in the areas of coatings, adhesives, microelectronics, aerospace, etc.\(^{67,68}\) One example of commercially importance are polysulfones (PSU), a class of polymers with excellent features, e.g., thermal stability, durability in harsh conditions, oxidation, pH and temperature resistance, ease of process ability and good film properties.\(^{69,70}\)

Sulfone-scaffold–3,4-dihydro-2\(H\)–1,3-benzoxazines (6) were prepared in high purity from 4,4′-diaminodiphenyl sulfone (7),\(^{71,72}\) bisphenolsulfone (8)\(^{25}\) or polysulfone\(^{73}\) and paraformaldehyde and phenol using a high boiling point, nonpolar solvent, see Fig. 11.

![Fig. 10. Structure of compound 7.](image1)

![Fig. 11. Sulfone-based 1,3-benzoxazines, diaminodiphenyl sulfone and bisphenolsulfone](image2)
2. 3. Synthesis of bio-based benzoxazine monomer

Interestingly, the raw materials for the synthesis of benzoxazine derivatives are almost always derived from petroleum oil. With the fast consumption of petroleum oil and the increasingly serious environmental pollution, the utilization of bio-based feedstock for the green preparation these derivatives has gained more attention in all domains.\textsuperscript{74,75}

In the synthesis of benzoxazines, renewable starting materials are used due to their availability, low toxicity, and relative low cost. Thus, natural occurring phenols, such as chavicol,\textsuperscript{76} guaiacol,\textsuperscript{77} cardanol,\textsuperscript{78,79} and lignocelluloses,\textsuperscript{80,81} are used in the synthesis of 1,3-benzoxazines (Fig. 12).

![Fig. 12. The structures of some naturally occurring phenols.](image)

2. 2. Synthesis of 4H-1,3-benzoxazin-2-ones

The benzoxazinones were prepared in the one-pot reaction of 2-naphthol, an aldehyde and urea in the presence of various catalysts such as iodine (Scheme 10), P\textsubscript{2}O\textsubscript{5} and Yb (OTf\textsubscript{3}),\textsuperscript{82} cellulose sulfuric acid,\textsuperscript{83} cyanuric chloride,\textsuperscript{84} phosphomolybdic acid,\textsuperscript{85} pyridinium-based ionic liquid,\textsuperscript{86} thiamine hydrochloride,\textsuperscript{87} zinc triflate,\textsuperscript{88} montmorillonite K10,\textsuperscript{89} zinc oxide,\textsuperscript{90} TMSCl/NaI,\textsuperscript{91} guanidine hydrochloride,\textsuperscript{92} etc.

![Scheme 10. One-pot Mannich reaction using iodine as catalyst.](image)
On the other hand, by condensation of amino-alkynaphthols with phosgene\textsuperscript{93} or carbonyl di-imidazole\textsuperscript{94} in the presence of triethylamine, 1,3-oxazin-2-one derivatives were produced in moderate yields. In addition, 1,3-benzoxazin-2-ones (8) were prepared by reaction of 2-hydroxyphenyl-substituted enones and isocyanates using bisguanidinium salt as catalyst.\textsuperscript{95}

![Fig. 13. Structure of compound 8.](image1)

Furthermore, 1,3-benzoxazine-2-ones were synthesized in the reaction of substituted salicylaldehydes with a primary amine and an aldehyde. As example, spiropyans based on benzoxazinone (4) were synthesized in the reaction of compound (A) with compound (B) using protonated acetic acid [MeC(OH)\textsubscript{2}]\textsuperscript{+}ClO\textsubscript{4}\textsuperscript{–} as catalyst, as indicated in Scheme 11.\textsuperscript{96}

![Scheme 11. Synthesis of spiropyans based on 1,3-benzoxazine-2-one.](image2)
In addition, 3,4-dihydro-2H-1,3-oxazin-2-ones were synthesized by intramolecular cyclization of arylcarbamates, which were produced from the reaction of aryl isocyanate and the corresponding 2-nitroethenyl phenol under basic conditions.\textsuperscript{97}

Via the reaction of salicyaldehyde/2-hydroxyacetophenone or its hydrazones and substituted urea or substituted semicarbazide under solventless microwave irradiation,\textsuperscript{98} 1,3-benzoxazin-2-ones were synthesized in a one-pot method (Scheme 12).

\begin{equation}
\text{Salicyaldehyde/2-hydroxyacetophenone} \xrightarrow{\text{Salicylaldehyde/2-hydroxyacetophenone}} \text{Benoxazin-2-ones}
\end{equation}

\begin{align}
\text{Scheme 12: Synthesis of 1,3-benoxazin-2-ones from salicyaldehyde/2-hydroxyacetophenone.}
\end{align}

2. 3. Synthesis of 2H-1,3-benoxazin-4-one

In the condensation of an acid halide with salicylamides in the presence of pyridine using boiling xylene as solvent, substituted 1,3-benoxazin-4-ones were formed in one-step. They were also formed in a two-step method by refluxing the salicylamide with aryl chloride in pyridine followed by cyclization of the isolated intermediate by hydrogen chloride.\textsuperscript{99}

Furthermore, by carbonylation-cyclization of ortho-halophenols and cyanamide\textsuperscript{100} or by treatment of the corresponding 2-hydroxycarboxamides with a formaldehyde/formic acid mixture,\textsuperscript{101} the corresponding 4H-1,3-benoxazin-4-ones were synthesized. 2-Trichloromethyl and 2-dichloromethylene-2H-1,3-benoxazin derivatives were obtained via intramolecular cyclization of N-(a-aryloxytrichloroethyl)imidoyl chlorides through dehydrochlorination.\textsuperscript{102} Additionally, 2-aryl-2-trifluoromethyl-2,3-dihydro-4H-benoxazin-4-ones were synthesized via intramolecular thermal cyclization of N-(1-aryl-2,2,2-trifluoroethylidene)-o-(3-alkoxyphenyl)urethanes, which were produced in the
reaction of 1-aryl-2,2,2-trifluoroethylisocyanates with 3-alkoxyphenols (Scheme 13).\(^\text{103}\)

![Scheme 13. Synthesis of 2-aryl-2-trifluoromethy-2,3-dihydro-4\(H\)-benzoxazin-4-ones.](image)

Moreover, 2,3-dihydro-4\(H\)-benzo[\(e\)]\[1,3\]oxazin-4-ones have been synthesized by intermolecular cyclization reactions of \(o\)-halobenzamides, LiOH and dichloromethane using copper-catalyzed tandem as catalyst.\(^\text{104}\)

2.4. Synthesis of 1,3-benzoxazine-2,4 (3\(H\))-diones

The 1,3-benzoxazine-2,4 (3\(H\))-diones were synthesized from the reaction of acardic acids with triphosgene,\(^\text{105}\) from the reaction of phthaloyl chlorides with acetone oxime\(^\text{106}\) or from the reaction of salicylate esters with isocyanates.\(^\text{107}\)

Reaction of 2-hydroxybenzonitrile with isocyanates\(^\text{108}\) using triethylamine as catalyst has been performed to obtain the target compounds as in Scheme 14.

![Scheme 14. Synthesis of 1,3-benzoxazine-2,4-(3\(H\))-diones from 2-hydroxybenzonitrile and isocyanates.](image)
3. CHEMISTRY OF 1,3-BENZOXAZINE DERIVATIVES

3.1. Unusual behavior of ortho-functional

The formation of intramolecular five-membered ring H-bond between the NH of the amide group and the oxygen of the oxazine ring (Fig. 14) is considered as unusual behavior of ortho-functional benzoxazines.109

Fig. 14. The intramolecular five-membered ring H-bond in benzoxazines.

Furthermore, it was observed that, o-methyl-substituted benzoxazine dimers, as shown in Fig. 15,110,111 trimers or tetraters exhibit intramolecular hydrogen bonding.112

Fig. 15. The molecular structure of a pair of methyl benzoxazine dimers.

Interestingly, the o-substituted benzoxazine dimers are used as novel ligands for rare earth metal ions, e.g. the Ce(III) ion. It was found that, the substituted groups on the para-positions of benzoxazine dimers do not affect the formation of complexes.113

3.2. Ring opening of benzoxazines

The dihydro-derivatives are more stable than the 1,3-benzoxazines towards acidic agents. The ring opening ability depends on the basicity of the oxygen and nitrogen atoms.114 In compounds with an active hydrogen, such as indoles,
carbazole, imides, and aliphatic nitro compounds even phenol (Scheme 15), thiols (Scheme 16) or carboxylic acids, auto-ring opening occurs as shown in Scheme 15, 16 and 17. The benzoxazines ring opening begins with protonation of oxygen and nitrogen atoms, as indicated in Scheme 17.

Scheme 15. The mechanism of benzoxazines ring opening.

Scheme 16. The auto-ring opening reaction of 1,3-benzoxazines.

Scheme 17. The benzoxazines ring opening by protonation of oxygen and nitrogen atoms

Furthermore, ring opening is promoted by irradiation with UV radiation (Scheme 18), resulting in the formation of two chromophoric systems (the 3H-indolium cation and the 4-nitrophenolate anion moiety).

In addition, the ring opening reaction of substituted benzoxazine would readily occur by heating due to the resonance stabilization of the iminium ion, as indicated in Scheme 19.
Scheme 18. Ring opening of 1,3-oxazine ring upon irradiation.

Scheme 19. The resonance stabilization of the iminium ion.

3.3 Ring-chain tautomerism

The 1-(substituted-phenyl)-3-alkyl-2,3-dihydro-1H-naphth-1,3-oxazines undergo ring-chain tautomerism, resulting in predominantly the trans- (12) over the cis-conformation (13) through compound (14), as shown in Scheme 20.

Scheme 20. 3,4-Dihydro-2H-1,3-benzoxazines epimerization.

4. REACTIONS OF 1,3-BENZOXAZINE DERIVATIVES

4.1 Hydrolysis with HCl

The benzoxazine derivatives (31) are hydrolyzed by HCl to give 2-amino-pyridine (32) or N-2-pyridylsalicylamide (33) depending on the concentration of the acid, as indicated in Scheme 21.

On Line First
4. 2. Salt formation

The formation salts of 1,3-benzoxazines has been realized by acidic cyclization of disalicylamide\textsuperscript{125} or by acylation of o-aminophenyl diphenyl-carbinol with carboxylic acids in the presence of perchloric acid\textsuperscript{126} producing 1,3-benzoxazinium perchlorate (\textsuperscript{9}).

![Scheme 21. Effect of acids on benzoxazine derivatives](image)

4. 2. 1. Reactions of \textit{4H-1,3-benzoxazin-4-onium} salts

Interestingly, benzoxazin-4-onium perchlorate (\textsuperscript{15}) reacts with the dialdehyde methyl 3,5-diformyl-2,4-dihydroxybenzoate (\textsuperscript{16}) in glacial acetic acid yielding the spiropyran of the 1,3-benzoxazine series (\textsuperscript{5}) through the formation of the intermediate styryl salt (\textsuperscript{17}). This intermediate has been isolated and then cyclized under the action of triethylamine in anhydrous diethyl ether to yield compound (\textsuperscript{18}), as shown in Scheme 22.\textsuperscript{127,128}
Scheme 22. Reaction of 4H-1,3-benzoxazin-4-ium salts with 3,5-diformyl-2,4-dihydroxybenzoate.

4. 3. Reaction with alkylhalides

1,3-Benzoxazine-2,4-dione was reacted with alkyl halide in the presence of K$_2$CO$_3$\textsuperscript{129,130}, yielding N-substituted derivatives (Scheme 23).

Scheme 23. Reaction of 1,3-benzoxazine-2,4-dione with alkyl halides

4. 4. Nucleophilic substitution reaction

4. 4. 1. Reaction with pyridine-N oxide

2,2-Dimethyl-3-(2-pyridyl)-4-oxo-4H-1,3-benzoxazine (19) was produced by refluxing the 4-chloro-derivative of benzoxazine (20) with two mole of pyridine-N-oxide in dichloromethane through a nucleophilic substitution reaction followed by rearrangement\textsuperscript{124} (Scheme 24).
2H-1,3-BENZOXAZINE DERIVATIVES SYNTHESIS AND BIOACTIVITIES

Scheme 24. Reaction of substituted-1,3-benzoxazines with pyridine-N-oxide.

4. 4. 2. Reaction with organometallic compounds

2,2-Dimethyl-1,3-benzoxazin-4-one derivatives react with organometallic compounds by nucleophilic substitution as shown in Scheme 25.

Scheme 25. Reaction of 1,3-benzoxazin-4-ones with organometallic compounds.

5. BIOLOGICAL ACTIVITIES

Benzoxazinone and their derivatives are a significant class of heterocyclic compounds, because many of these derivatives display diverse biological activities.

Fig. 17. Structure of Elbasvir (10).
5. 1. Antiviral therapy

Elbasvir (10)\textsuperscript{132,133} is potent inhibitor of the HCV NS5A protein and is used in combination with grazoprevir for the treatment of the hepatitis C virus (HCV) NS3/4A.\textsuperscript{134} In addition, grazoprevir/elastic plus repairing were examined as a new treatment option for patients after failure of triple therapy containing an earlier-generation protease inhibitor.\textsuperscript{135}

5. 2. Anti-tuberculosis activity

The antimycobacterial activity of various substituted 3-phenyl-2H-benzoxazine-2,4-(3H)-dithiones and 3-(phenyl)-4-thioxo-2H-benzoxazine-4-(3H)-diones have been studied using a quantum molecular similarity approach. The replacement of the oxo-group by the thioxo-group in position 4 on the benzoxazin-2,4-dione ring increases the activity, as well as the similar replacement in position 2.\textsuperscript{136,137} In vitro antimycobacterial activity against Mycobacterium tuberculosis, Mycobacterium avium and two strains of Mycobacterium kansasii were studied. Furthermore, the antimycobacterial activity increased with replacement of the carbonyl group by the thiocarbonyl group in the starting 3-(4-alkylphenyl)-2H-1,3-benzoxazine-2,4-(3H)-diones.\textsuperscript{138,139}

5. 3. Fungicidal and pesticide activities

A series 2,3-disubstituted-3,4-dihydro-2H-1,3-benzoxazines was prepared by reaction of aza-acetalizations of aromatic aldehydes with 2-(N-substituted aminomethyl)phenols in the presence of trimethylsilyl chloride (TMSCl). The fungicidal activities were evaluated, and some of these compounds exhibited activity against Rhizoctonia solani.\textsuperscript{65} Additionally, a series of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines was prepared in high yields from o-arylaminomethylphenols and aromatic aldehydes in the presence of SnCl\textsubscript{4}. Their fungicidal activities were investigated. Some of the products showed good fungicidal activities against Rhizoctonia solani.\textsuperscript{27} Furthermore, novel naphtho[1,2-e][1,3]oxazines bearing an arylsulfonamide moiety were synthesized and evaluated for their anticancer and antifungal activities.\textsuperscript{140}

Moreover, substituted 8-hydroxy-3-phenyl-2H-1,3-benzoxazine-2,4-(3H)-diones were synthesized by cyclization of the corresponding dihydroxy-N-phenylbenzamides with methyl chloroformate. Thionation of the compounds was performed using Lawesson's reagent. All compounds were tested in vitro for their antifungal activity against eight test strains. The compounds showed moderate activity.\textsuperscript{141}

In addition, the compounds 3-nonyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines and 3-decyl-3,4-dihydro-4-methyl-2H-1,3-benzoxazines were studied and investigated as pesticides.\textsuperscript{142}
5. 4. *Anticonvulsive activities*

4-(2H)-1,3-benzoxazine-2,4-(3H)-dione]-butyric acid (BXDBA) shows good anticonvulsive activity and its ability to block bicuculline-induced convulsions suggests that it could be a GABA<sub>A</sub> mimetic drug.\(^{143,144}\)

5. 5. *Antibacterial activities*

N-(Benzy carbamothioyl)-2-hydroxy-substituted benzamides were synthesized using sodium bicarbonate and benzyl amine with 2-thioxo-substituted-1,3-benzoxazines. These derivatives were investigated as antibacterial and antifungal agents.\(^{145}\)

Moreover, a series of 1,2-bis(3,4-dihydrobenzo[e][1,3]oxazin-3-(4H)-yl)ethane derivatives (11) was synthesized via an eco-friendly Mannich-type condensation-cyclization reaction of phenols or naphthols with formaldehyde and primary amines in water at ambient temperature. *In vitro* antimicrobial activity of the synthesized compounds was assessed against six pathogenic fungi, two Gram-negative and two Gram-positive bacteria. Some of the screened compounds showed significant *in vitro* antimicrobial effects.\(^{146}\)

![Fig. 18. Structure of compound 11.](image)

Derivatives of benzofuranyl-1,3-benzoxazine and 1,3-benzoxazin-2-one were synthesized via coupling benzofuran with 1,3-benzoxazines and 1,3-benzoxazin-2-ones through –CONH– and –COCH<sub>2</sub>– bridges, respectively. The antimicrobial activity of these compounds was reported.\(^{147}\)

5. 6. *Anticancer activities*

Furthermore, naphtho[1,2-e][1,3]oxazines bearing a arylsulfonamide moiety, synthesized via a one-pot method, showed remarkable activities against MCF-7 (breast) and HCT116 (colon) cancers.\(^{140}\) In addition, 1,3-benzoxazines having a flavone moiety at the 3-position also showed activities against MCF-7,\(^{148}\)

2H-1,3-Oxazine-2,6-(3H)-dione (3-oxauracil) exhibited cytotoxic activity against the tested cancer cell lines (pancreatic, colon, neuroendocrine and
These derivatives were studied as an inhibitor of selected neoplastic cell growth *in vivo*.\textsuperscript{149}

In addition, a series of modified hexacyclic camptothecin derivatives containing a 1,3-oxazine ring was synthesized. All compounds were assayed *in vitro* against nine human cancer cell lines. Some of these compounds showed about 13-fold greater potency than camptothecin, and about six-fold greater potency than topotecan toward HEPG-2. Furthermore, the *N*-alkyl-substituted derivatives were more potent than the *N*-aryl- and *N*-benzyl-substituted compounds.\textsuperscript{150}

The synthesis of 6-aryl, 8-aryl, and 8-aryl-6-chloro-2-morpholino-1,3-benzoxazines with potent activity against PI3K and DNA-PK was studied. A compound with the 8-(naphthalen-1-yl) scaffold showed strong anti-proliferative activity against A498 renal cancer cells, which warrants further investigation.\textsuperscript{151}

5. 7. Antihypertensive activities

The antihypertensive and cardiovascular properties of a new potassium channel opener, TCV-295 (12), were studied in rats and dogs. In conscious, spontaneously hypertensive rats (SHR), TCV-295 reduced blood pressure (BP) with a low dose dependence and with slow onset of action were observed.\textsuperscript{152}

An efficient process for potassium channel opener TCV-295, based on 4-(2-pyridyl)-2H-1,3-benzoxazine ring formation from *o*-hydroxybenzoylpyridine by the NH\textsubscript{4}I/piperidine/2,2-dimethoxypropane system and subsequent selective pyridine-*N*-oxidation using dimethyldioxirane, was examined.\textsuperscript{153}

In addition, to explore K\textsuperscript{+} channel openers, a series of 1,3-benzoxazine derivatives with a 2-pyridine-1-oxide group at C4 (12) was synthesized by one-pot 1,3-benzoxazine skeleton formation using a palladium (O)-catalyzed carbon–carbon bond formation reaction of imino-triflates with organozinc reagents. The compounds were tested for vaso-relaxant activity using BaCl\textsubscript{2}-induced and high KCl-induced contraction of rat aorta to identify potential K\textsuperscript{+} channel openers, and also for oral hypotensive effects in spontaneously hypertensive rats.\textsuperscript{131}

![Fig. 19. Structure of compound 12.](image-url)
5.8. Antimalarial activities

A series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines was synthesized and evaluated in vitro for antimalarial efficacy against chloroquine sensitive (MRC-02) and chloroquine resistant (RKL9) strains of *Plasmodium falciparum*.\(^{154}\)

The antimalarial activities of the resulting benzoxazines, their isosteric tetrahydroquinazoline derivatives, and febrifugine-based 1,3-quinazolin-4-ones were examined in vitro (against *Plasmodium falciparum*) and in vivo (against *Plasmodium berghei*).\(^{139}\)

5.9. Antidiabetic and hypolipidaemic activity

A series of 5-[4-[2-(2,3-benzoxazine-4-one-2-yl)ethoxy]phenyl methyl]thiazolidine-2,4-diones was synthesized and investigated for their plasma glucose and plasma triglyceride lowering activity. In addition the synthesized 2,4-thiazolidinedione derivatives of 1,3-benzoxazinone were evaluated for their antidiabetic and hypolipidaemic potential. For example, DRF-2519 (13) showed potent dual PPAR activation.\(^{155}\)

![Fig. 20. Structure of compound 13.](image)

5.10. Receptor antagonist activity

The synthesis and pharmacology of benzoxazines (14) were investigated as highly selective antagonists at M\(_4\) Muscarinic Receptors.\(^{156}\)
5. 11. Antidepressant activity

It was found that 1,3-benzoxazine-2,4-diones (15) have binding affinities for the 5-HT\textsubscript{1A} and 5-HT\textsubscript{7} receptors.\textsuperscript{129} Furthermore, the benzoxazine derivative caroxazone (16), was investigated in vitro and in vivo as antidepressant (Ro 11-1163) and as a specific and short-acting MAO-A inhibitor.\textsuperscript{157}

5. 12. Anti-platelet aggregation activity

A series of 2,8-disubstituted benzoxazinones (17) was synthesized and studied as anti-platelet aggregation agents via inhibition of superoxide anion generation and inhibition of neutrophile elastase release assays. It was found that,
the synthesized compounds were more potent than aspirin on AA-induced platelet aggregation.\textsuperscript{158,159}

![Structure of compound 17](image)

**Fig. 23. Structure of compound 17.**

5. 13. Miscellaneous activities

In addition, other benzoxazine compounds have anti-inflammatory activities, e.g., compounds (18) and (19)\textsuperscript{30}, and analgesic and antipyretic properties, such as chlorthenoxazin (20).\textsuperscript{19,30} Furthermore, these derivatives are used as specific inhibitors of the Tissue Factor (TF)/Factor Via (Via)-induced pathway of coagulation, as reported in the literature.\textsuperscript{160}

![Structures of compounds 18, 19 and 20](image)

**Fig. 4. Structures of compounds 18, 19 and 20.**

CONCLUSIONS

In conclusion, the synthetic potential and transformations of 3,4-dihydro-2H-1,3-benzoxazines remain largely of interest. The 3,4-dihydro-2H-1,3-benzoxazines are flexible and tough, which lead the molecules to have diverse
workable site for substitution. In addition, they exhibit a wide range of biological activities, such as herbicides and agricultural microorganisms, and they show diverse pharmacological activities, such as antitumor agents, antiretroviral therapy, antitubercular activity, antibacterial activity, anti-inflammatory activity, anticonvulsant activity, etc. On the other hand, the growth of drug resistance is considered a major problem in medicine and to overcome this status, the synthesis of new classes of compounds is a requisite. Consequently, the data collected in this review could be used to provide novel benzoxazine derivatives that could be utilized for the development of new compounds to overcome resistance of drugs for various diseases.

ИЗВОД

ХЕМИЈА И БИОЛОШКА АКТИВНОСТ 3,4-ДИХИДРО-2Н-1,3-БЕНЗОКСАЗИНИ И ЊИХОВИ ОКСО-ДЕРИВАТЫ

NABAWEYA ABD EL-SALAM SHARAF EL-DIN

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh street, 31527, Tanta, Egypt

Деривати 3,4-дихидро-2Н-1,3-бензоксазина су природни производи и значајна класа хетероцикличних јединиња посебно због њихове изузетне активности у хуманој медицини, фитофармацији и ветеринарној. Услед могућности за надградњу бензоксазинске структуре, компаративне хемијске једнознастности и доступности, ова јединиња су подесан извор за нова биоактивна јединиња. Резултати тога су истраживање и откриће велике групе ових јединиња која показују широк опсег биолошких активности, као што су антифунгална, антибактеријска, анти-HIV, антиканцерска, релаксациона, анти-инфламаторна и др. Овај преглед литературе даје кратак приказ деривата 3,4-дихидро-2Н-1,3-бензоксазина и њихових оксо-деривата, хемијску реактивност и биоактивност.

(Примљено 30. маја 2018, ревидирано 3. децембра 2018; прихваћено 10. јануара 2019)

REFERENCES

1. L. Lázár, F. Fülöp, 1,3-Oxazines and their benzo derivatives, in Comprehensive Heterocyclic Chemistry III, Vol. 8, Elsevier Ltd., 2008, p. 373 (http://dx.doi.org/10.1016/B978-008044992-0.00705-7)
2. J. B. Chylińska, T. Urbaniski, J. Heterocycl. Chem. 1 (1964) 93 (http://dx.doi.org/10.1002/jhet.5570010208)
3. W. J. Burke, J. Am. Chem. Soc. 71 (1949) 609 (http://dx.doi.org/10.1021/ja01170a063)
7. W. J. Burke, R. P. Smith, C. Weatherbee, J. Am. Chem. Soc. 74 (1952) 602 (http://dx.doi.org/10.1021/ja01123a007)


