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PHARMACOPHORE GENERATION PROTOCOL 
The ligands preparation for in silico studies was realized using LigPrep 

(Schrödinger),1 by following the steps: optimization of the structures with the 
OPLS_2005 force field, ionization with Epik at pH 7.0, and generation of stereo-
isomers for the structures with unspecified chiralities. 

ConfGen (Schrödinger)2 was engaged in the generation of multiple con-
formers for each compound using default settings. The compounds were con-
sidered active if the pIC50 value is >6.3 and inactive if the pIC50 value is <5.8. 
The maximum number of pharmacophore sites was set to four and all the active 
compounds matched the common pharmacophore hypotheses further obtained. 

TABLE S-I. The structure of the compounds and their experimental SMO inhibitory activity 
expressed in logarithmic units (pIC50); the compounds structures were drawn with 
MarvinSketch (ChemAxon) (http://www.chemaxon.com) 
No. Structure pIC50 No Structure pIC50 
1  6.161 2[b] 

 

5.568 

3  5.886 4 

 

5.283 
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5a,b  5.387 6[b] 

 

6.568 

7  6.102 8 

 

6.259 

9  5.920 10 

 

5.823 

11a,b  6.522 12[b] 

 

6.455 

13a  7.060 14[b]

 

6.356 

15a,b]  6.376 16[b] 

 

6.568 

17a,b  6.698 18[b]

 

6.420 

19a  6.568 20 

 

6.130 

21  6.017 22[b] 

 

5.387 

23b  6.040 24[b] 

 

5.744 

25  6.050 26[c] 

 

6.187 

aThe compounds used for decoys generation; bthe test set compounds of the 3D-QSAR model 

Test set selection 
In order to split the dataset in training and test sets, we followed the recom-

mendation of Golbraikh papers:3–5 
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1) “On the basis of our analysis, we suggest that the test set must include no 
less than five compounds, whose activities and structures must cover the range of 
activities (see Figure S1) and structures of compounds from the training set.” 

2) “Ideally, the division into the training and test set must satisfy the 
following three conditions: i) all representative compound-points of the test set in 
the multidimensional descriptor space must be close to those of the training set. 
ii) All representative points of the training set must be close to those of the test 
set. iii) The representative points of the training set must be distributed within the 
whole area occupied by the entire dataset.” To verify this, in our case, we have 
calculated the similarity between our training and test sets. 

 
Fig. S-1. Histogram of dataset pIC50 distribution. 

Peter Willett6 demonstrates that the well-known Tanimoto coefficient rem-
ains the method of choice for the computation of fingerprint-based similarity. 
The Tanimoto coefficient was calculated in order to have a quantitative basis, a 
similarity measure, and to assess the degree of resemblance between the training 
set and the test set. The Tanimoto similarity was computed using MACCS finger-
prints, calculated with KNIME.7 The test–training pairwise similarity values dis-
play a distribution shifted toward high values (0.85–1, Fig. S-2). 

In addition, we have used the Euclidean Distance algorithm to work out the 
similarity between each two pairs of compounds by computing the score for each 
pair of nodes. The zero value for Euclidean Distance means absolute identity. For 
the training and test sets the distribution of values for Euclidean Distance are 
similar (Fig. S-3). 

Furthermore, the median values for the most important 2D properties 
(FILTER (OpenEye))8 of molecules were calculated. In our case, the median 
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value for training and test denote that the two sets of molecules are rather similar 
in character (Table S-II). 

 
Fig. S-2. The distribution of 2D Tanimoto coefficients values for training and test sets. 

 
Fig. S-3. The distribution of Euclidean Distance values for training and test sets 

TABLE S-II. Characteristics (min, max and median values) of the training and test set 
molecules; MW – molecular weight; NRS – number of ring systems; RBN – rotatable bonds; 
RB – rigid bonds 
Set Name MW NRS RBN RB XLogP 2d PSA 
Training MIN 370.86 3 3 26 1.41 68.32 

MAX 482.02 4 6 34 4.12 90.08 
MEDIAN 452.405 4 5 31 2.865 77.19 

Test set MIN 425.93 3 4 27 1.24 60.51 
MAX 495.93 4 6 34 3.93 90.08 

MEDIAN 450.94 4 5 31.5 2.75 77.19 
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Building of the external validation dataset 
The external validation dataset was assembled by extracting data from the 

ChEMBL database.9 Firstly, 818 compounds having inhibitory activity against 
SMO receptor were extracted. Then, the compounds with unspecified bioactivity 
IC50 against SMO receptor, as well as those having IC50 values expressed with a 
qualifier of type “<” and “>” were removed. Finally, the duplicates were 
discarded using Instant JChem software (Instant JChem v. 17.17.0, 
https://chemaxon.com/) and 689 active compounds were retained. Subsequently, 
drug-like filtering criteria, e.g., HBA (hydrogen bond acceptors) = 3–4, HBD 
(hydrogen bond donors) = 0–3, MW (molecular weight) = 371–496, RBN 
(number of rotatable bonds) = 3–6, XLogP = −0.4–3.7, 2dPSA (2d polar surface 
area) = 60–90 were applied, resulting 179 compounds which have been desig-
nated as actives in the evaluation procedure.9–11 In order to select the decoys, a 
free on-line automated tool from the Directory of Useful Decoys, enhanced 
(DUD-E, http://decoys.docking.org), was used.12 The decoys set was compiled 
based on the similarities with the compounds used for pharmacophore generation 
(Table I), employed as queries. Thus, 50 decoys were selected for each query, 
with the exception of compounds 2 and 22 (for which 100 decoys were identified 
for each of them). The extracted decoys have similar physicochemical properties 
(MW, HBA, HBD, logP and RBN) with queries but dissimilar 2-D topology. 
Therefore, 179 compounds designated as actives and 1350 decoys entitled as 
inactive were used for virtual screening (VS) experiments in order to find 
matches over the obtained pharmacophore hypotheses. The fitness scores were 
used for the ranking of the compounds over the best pharmacophore hypothesis. 
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