

J. Serb. Chem. Soc. 85 (5) S205–S211 (2020)

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO **A highly inducible** β -galactosidase from *Enterobacter* sp.

BESTOON AHMED SHAİKHAN¹, KEMAL GÜVEN²*, FATMA MATPAN BEKLER¹, ÖMER ACER¹ and REYHAN GÜL GÜVEN³

¹Department of Biology, Faculty of Science, Dicle University, 21280 Diyarbakır, Turkey, ²Department of Molecular Biology and Genetics, Faculty of Science, Dicle University, 21280 Diyarbakır, Turkey and ³Science Teaching Section, Education Faculty, Dicle University, 21280 Diyarbakir, Turkey

J. Serb. Chem. Soc. 85 (5) (2020) 609–622

Fig. S-1. Phylogenetic analysis of 16S rRNA gene sequence similarities of *Enterobacter* sp. 3TP2A based on the BLAST result using the neighbor-joining method. Scale bar represents 0.1 substitutions per nucleotide position. The organisms and GeneBank accession numbers of analyzed sequences are given in parenthesis

S205

^{*} Corresponding author. E-mail: kemalg@dicle.edu.tr

Fig. S-2. Effect of different lactose concentrations on the production of β -galactosidase in *Enterobacter* sp. 3TP2A.

SUPPLEMENTARY MATERIAL

а

Fig. S-3. Molecular weight estimation by gel filtration chromatography. a) Elution profiles of gel filtration chromatography, b) calibration curve for molecular weight determination using gel filtration chromatography. Standard proteins; (1) β -galactosidase (MW: 116 kDa), (2) α -amylase (MW: 55 kDa), (3) carbonic anhydrase (MW: 29 kDa), (β -Gal) purified β -galactosidase from *Enterobacter* sp. 3TP2A.

Available on line at www.shd.org.rs/JSCS/

Fig. S-4. Effect of temperature (a) and pH (b) on β -galactosidase activity in *Enterobacter* sp. 3TP2A.

Available on line at www.shd.org.rs/JSCS/

Fig. S-5. Effect of thermal (a) and pH (b) stability on purified β -galactosidase activity from *Enterobacter* sp. 3TP2A.

SHAIKHAN et al.

TABLE S-I. Effect of metal ions on the activity of purified β -galactosidase from *E. cloacae*; ND: not determined

	Percent activity retained, % Concentration of metal ions, mM					
Chemical						
	1	2	5	10	20	
Ca^{2+}	94±2.3	95±1.5	100±1.5	105±1.0	84±2.1	
Cu ²⁺	4.1 ± 0.1	0	0	0	0	
Mg^{2+}	117±1.5	125±2.3	120±0.3	120 ± 1.5	147±2.3	
Zn^{2+}	68 ± 1.8	73±0.1	92±2.9	103 ± 2.7	ND	
EDTA	32±0.9	29±0.4	27±2.4	25±0.3	24±0.8	

TABLE S-II. Effect of inhibitors on the activity of purified β -galactosidase

	Percent activity retained, %							
Chemical	Concentration of inhibitors, mM							
	1	2	4	8				
N-Ethylmaleimide	0	0	0	0				
DTT	$100{\pm}1.5$	102 ± 2.1	97±0.3	108 ± 1.9				
2-Mercaptoethanol	102 ± 1.2	99±1.4	ND	114 ± 1.5				
Iodoacetamide	99±3.02	87±4.3	94±1.4	93±1.7				
Concentration of inhibitors, mM								
	0.2	0.4	1	2				
PCMB	13.7±0.4	13.9±0.5	13.08 ± 0.8	13.3±0.2				

Fig. S-6. Linewever–Burk plot of the enzyme using various ONPG concentrations.

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

Fig. S-7. Lactose hydrolysis using purified β -galactosidase.