Modeling of chlorinated phenols adsorption on polyethylene and polyethylene terephtalate									
		mic	roplastic						
LONČARSKI MAJA ¹ , TUBIĆ ALEKSANDRA ^{*,1} , KRAGULJ ISAKOVSKI MARIJANA ¹ ,									
JOVIĆ BRANISLAV ¹ , APOSTOLOVIĆ TAMARA ¹ , NIKIĆ JASMINA ¹ ,									
		AGBAB	A JASMINA ¹						
		Suppleme	ntary material						
Table S1. Physico-chemical properties of the investigated chlorophenols									
Compounds	MW, g mol ⁻¹	log K _{ow} ^a	V_{i}^{a} / cm ³ mol ⁻¹ 10 ⁻²	$S_{\mathbf{w}}^{\mathbf{a}\prime}$ mg l ⁻¹	pKa ^a				
4-CP	129	2.40	1.02	27100	8.85				

Compounds	\mathbf{MW} , g mol ⁻¹	log K _{ow} ^a	V_{i}^{a} / cm ³ mol ⁻¹ 10 ⁻²	S_w^{a} mg l ⁻¹	pKa ^a
4-CP	129	2.40	1.02	27100	8.85
2,4-DCP	163	3.06	1.14	4500	7.90
2,4,6-TCP	197	3.69	1.26	800	6.40
РСР	266	5.12	1.39	14	4.80

- 12 MW molecular weight; K_{ow} , octanol-water partition coefficient; V_i McGowan volume. ^aKragulj *et al.*
- 13

14 Analytical procedure, quality assurance and quality control

15 Determination of the selected chlorinated phenols in water was performed using gas 16 chromatography with mass spectrometry (Agilent Technologies, 7890A GC System/5975C VL 17 MSD) after derivatization and liquid-liquid extraction with hexane. Blank and control 18 experiments were performed in parallel to the sorption experiments. Blank tests, containing same 19 amounts of background solution and solid particles as the samples, but without the addition of 20 chlorinated phenols, were carried out using conditions similar to those described previously, and 21 no target compound was found. Control tests were carried out in 20 mL of background solution 22 containing a same gradient of CP concentrations as the samples, but without solid particles, in 23 order to evaluate the loss of CP resulting from some additional removal processes, such as 24 volatilization and/or sorption to the wall of glass bottles. Recovery of selected CP after 25 derivatization with acetanhydride and liquid-liquid extraction with hexane ranged from 80-116 26 with the relative standard deviations (RSD) being below 10 % for all CPs. The method detection 27 limits (MDLs) of the applied analytical methods ranged between 0.11-0.53 μ g L⁻¹. The 28 correlation coefcient for the chlorinated phenols calibration curve was higher than 0.99. All the 29 reported concentrations of CP were corrected with the recovery efficiency and internal standard.

- 32 33

51 Fig. S4. Linear plots of sorption pseudo-second-order kinetic model for 2,4-DCP, 2,4,6-TCP and 52 PCP onto a) PE, b) PE_PCPs_1, c) PE_PCPs_2 and d) PET

53

45

54

55 56

Fig S5. Linear plots of sorption modelled with intraparticle diffusion kinetics for 2,4-DCP, 2,4,6-57 TCP and PCP on a) PE, b) PE_PCPs_1, c) PE_PCPs_2 and d) PET

Table S2. Theoretical and experimental q_e values obtained with pseudo-second-order model

Compounds	Sorbents	k_1 (h ⁻¹)	R ²	q e (theoretical)	q e (experimental)	SD
	PE	0.0064	0.998	142.9	141.6	0.88
4 CB	PE_PCPs_1	0.0120	0.994	84.50	89.85	3.76
4-CF	PE_PCPs_2	0.0130	0.987	77.40	79.33	1.36
	PET	0.0140	0.998	69.69	69.71	0.01
	PE	0.0045	0.999	222.2	223.2	0.66
2 4 DCP	PE_PCPs_1	0.0054	0.995	188.7	189.6	0.69
2,4-DCF	PE_PCPs_2	0.0044	0.992	223.7	226.1	1.68
	РЕТ	0.0080	0.998	126.3	125.6	0.44
	PE	0.0066	0.991	156.3	157.7	1.03
2 4 6 TCD	PE_PCPs_1	0.0057	0.998	175.4	176.8	0.95
2,4,0-101	PE_PCPs_2	0.0053	0.999	199.0	207.9	6.29
	РЕТ	0.0153	0.998	65.57	67.43	1.32
	PE	0.0110	0.998	90.09	90.66	0.40
рср	PE_PCPs_1	0.0130	0.995	81.30	80.66	0.45
ICF	PE_PCPs_2	0.0100	0.992	104.1	103.0	0.74
	PET	0.0430	0.990	23.94	25.75	1.28

60

61 Table S3. Freundlich and Langmuir parameters for adsorption of CPs on MPs

	Sorbents	Freundlich model						
Compounds		D ²	n K _F /(μg g ⁻¹ /μg l ⁻¹	$V_{\rm T} / (u_{\rm T} q^{-1} / u_{\rm T} l^{-1})^{n}$	log K _d			
		К		Μ ^F / (μg g /μg Ι)	$0.01 \; S_{\rm w}$	$0.05 S_w$	$0.5 S_{\rm w}$	
4-CP	PE	0.967	0.60	4.02	1.51	1.18	0.95	
	PE_PCPs_1	0.967	0.94	1.65	1.28	1.05	0.71	
	PE_PCPs_2	0.982	0.75	3.88	1.29	1.02	0.63	
	РЕТ	0.999	0.90	1.29	1.86	1.69	1.45	
2,4-DCP	PE	0.969	0.63	0.94	1.63	1.35	1.16	
	PE_PCPs_1	0.985	0.58	3.45	1.59	1.30	0.86	

	PE_PCPs_2	0.977	0.75	1.02	1.29	1.12	0.86		
	РЕТ	0.971	0.92	0.29	2.10	2.05	1.96		
	PE	0.947	0.66	1.39	1.82	1.58	1.24		
246 TCD	PE_PCPs_1	0.961	0.6	1.69	1.67	1.40	0.99		
2,4,0-101	PE_PCPs_2	0.99	0.6	1.50	1.61	1.32	0.92		
	РЕТ	0.989	0.85	0.99	2.41	2.31	2.16		
	PE	0.959	0.57	1.78	2.34	2.04	1.61		
DCD	PE_PCPs_1	0.931	0.53	1.57	2.18	1.85	1.38		
rtr	PE_PCPs_2	0.945	0.54	0.63	1.81	1.49	1.02		
	РЕТ	0.953	0.94	0.93	2.84	2.79	2.73		
Compounds	Sorborta	Langmuir model							
Compounds	Sorbents	\mathbf{R}^2		$q_{ m max}$ / $\mu { m g}~{ m g}^{-1}$	$K_{\rm L}$ / l µg ⁻¹	RL			
	РЕ	0.997		63.30	0.0530	0.203-0.972			
4 CB	PE_PCPs_1	0.974		282.9	0.0059	0.210-0.965			
4-01	PE_PCPs_2	0.967		86.90	0.0058	0.745-0.997			
	РЕТ	0.999		335.5	0.0030	0.828-0.998			
	PE	0.921		44.90	0.0066	0.624-0.996			
	PE_PCPs_1	0.992		55.30	0.0339	0.267-0.986			
2,4-DCI	PE_PCPs_2	0.967		86.90	0.0058	0.668-0.996			
	РЕТ	0.973		104.7	0.0023	0.826-0.998			
	PE	0.984		22.90	0.0391	0.223-0.974			
2 4 6-TCP	PE_PCPs_1	0.974		38.70	0.0186	6 0.377-0.989			
2,4,0-1CP	PE_PCPs_2	0.993		27.80	0.0294	0.276-0.984			
	РЕТ	0.990		198.4	0.0039	9 0.763-0.998			
	PE	0.949		15.60	15.60 0.1354 0.		77-0.937		
РСР	PE_PCPs_1	0.948		23.70	0.0243	0.306-0.985			
	PE_PCPs_2	0.939		7.70	0.0691	0.130-0.951			
	PET	0.956		309.9	0.0027	0.825-0.999			