Synthesis, crystal structure and biological activity of a copper(II) complex with a 4-nitro-3-pyrazolecarboxylic ligand

MILICA KOSOVIĆ1 ${ }^{1}$, SLAĐANA NOVAKOVIĆ ${ }^{2}$, ŽELJKO JAĆIMOVIĆ ${ }^{1 *}$, NEDELJKO
LATINOVIĆ ${ }^{3}$, NADA MARKOVIĆ ${ }^{1}$, TAMARA ĐORĐEVIĆ ${ }^{4}$, EUGEN LIBOWITZKY ${ }^{4}$ and GeRALD GiESTRER
${ }^{1}$ Faculty of Metallurgy and Technology, University of Montenegro, Cetinjski put, 81000 Podgorica, Montenegro, ${ }^{2}$ Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, P.O. Box 522, University of Belgrade,
11001 Belgrade, Serbia, ${ }^{3}$ Biotechnical Faculty, University of Montenegro, Podgorica, Montenegro and ${ }^{4}$ Institut für Mineralogie und Kristallographie, Universität Wien - Geozentrum, Althanstraße 14, 1090 Wien, Austria

J. Serb. Chem. Soc. 85 (7) (2020) 885-895

RESULTS OF CSD SEARCH
Cu(II) complexes with unsubstituted 3-pyrazolecarboxylato ligands
In the case of $\mathrm{Cu}(\mathrm{II})$ complexes with the parent 3-pyrazolecarboxylato ligand, the CSD search revealed mononuclear (CSD refcode: DABRUW ${ }^{1}$), binuclear (CSD refcodes: BEQGIQ, ${ }^{2} \mathrm{BOYBOI}^{3}$ and $\mathrm{RUNXOO}{ }^{4}$) and polynuclear complexes (CSD refcodes: BOYBUO, ${ }^{3}$ LAGNIT, ${ }^{5}$ QOFLAA ${ }^{6}$). Only in the mononuclear DABRUW^{1} is the $\mathrm{Cu}(\mathrm{II})$ found in an octahedral coordination environment. In all binuclear complexes, the $\mathrm{Cu}(\mathrm{II})$ is placed in a square pyramidal coordination environment, where fully deprotonated ligands bridge and chelate the pair of $\mathrm{Cu}(\mathrm{II})$ centres to form the square base of a polyhedron. Among these complexes, the binuclear BEQGIQ complex can be considered as a five-coordinated analogue of the title octahedral complex, with one axial $\mathrm{H}_{2} \mathrm{O}$ ligand less in $\mathrm{Cu}(\mathrm{II})$ coordination sphere. ${ }^{2}$

In general, regardless of the different coordination geometry, the binuclear, octahedral $\left[\mathrm{Cu}_{2}(4 \text {-nitro- } 3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$ complex and the extracted square pyramidal 3-pyrazolecarboxylato $\mathrm{Cu}(\mathrm{II})$ complexes exhibit a number of common features. All complexes are characterized by a similar, approximately flat ring system composed of a six-membered ring and five-membered chelate rings placed in the base plane of a polyhedron. The $\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 1$ bite angle of the

[^0]chelating pz-ligand shows small variation, from 81.1 in RUNXOO (where square base is completed by an imidazole ligand) to 82.5° in OJUKOU (the square base is completed by a DMSO ligand). In the title octahedral complex, the pz-ligand bite angle is $81.24(5)^{\circ}$. In all cases, the pyrazolecarboxylato ligand is characterized by an asymmetrical coordination, which is mainly reflected in the dissimilar $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{N} 1$ angles of the central, six membered rings. The difference between the two angles ranges from 13.9 in RUNXOO ${ }^{4}$ to 16.8° in BEQGIQ. ${ }^{2}$ In the title octahedral complex, this difference is 12.8°.

In comparison to $\left[\mathrm{Cu}_{2}(4 \text { nitro- } 3 \mathrm{pzc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}-\mathrm{N} 1$ and $\mathrm{Cu}-\mathrm{N} 2$ coordination bonds in the analogue square pyramidal BEQGIQ are notably shorter (1.952 and $1.962 \AA$), while the $\mathrm{Cu}-\mathrm{O}$ bond has a similar length ($1.990 \AA$). Such bond distribution may be responsible for the above-mentioned increased difference between the $\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{N} 1$ angles of BEQGIQ in comparison to $\left[\mathrm{Cu}_{2}(4 \text { nitro- } 3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$. The $\mathrm{Cu}-\mathrm{N}$ coordination bonds in square pyramidal complexes show considerable variation in lengths, which seems to depend of the size of the additional equatorial ligand. Thus, in BOYBOI ${ }^{3}$ and RUNXOO, ${ }^{4}$ which contain a pyridine and imidazole ligand, respectively, the bonds are longer than those in $\left[\mathrm{Cu}_{2}(4 \text { nitro- } 3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{Cu}-\mathrm{N} 1$ and $\mathrm{Cu}-$ N2 lengths: 1.974 and 1.983 in BOYBOI, while they are 1.970 and 1.984 in RUNXOO). The described redistribution of bond distances and angles suggests that the rigid 3-pyrazolecarboxylato ligand displays considerable adjustments in coordination in order to preserve the approximately planar form of the condensed ring system. The sum of the angles in each central six-membered ring is very close to the 720° of an ideal hexagon.

Octahedral binuclear complexes with 3-pyrazolecarboxylato ligands

In recently reported crystal structures of $\left[\mathrm{Co}_{2}(4 \text {-nitro- } 3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}^{7}$ and $\left[\mathrm{Ni}_{2}(3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$ complexes (refcode: LAGNOZ) ${ }^{5}$ the corresponding metal ions were found in an octahedral coordination environment, equivalent to that of $\mathrm{Cu}(\mathrm{II})$ in $\left[\mathrm{Cu}_{2}(4 \text { nitro- } 3 \mathrm{pc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$. The $\mathrm{M}-\mathrm{N}$ coordination bond distances increase from those in $\mathrm{Cu}(\mathrm{II})$ complex [1.971(1) and 1.972(1) \AA] to $\mathrm{Ni}(\mathrm{II})$ [2.039 and $2.024 \AA$] and $\mathrm{Co}(\mathrm{II})$ [2.0729 (7) and 2.0679 (7) \AA] complexes. The $\mathrm{N} 2-\mathrm{M}-\mathrm{O} 1$ bite angle shows the opposite trend $[81.24(5), 79.3$ and $\left.76.55(3)^{\circ}\right]$, as well as the distance to the axial water ligand [2.47, 2.15 and $2.12 \AA$ on average in the Cu , Ni and Co complex, respectively]. A somewhat different octahedral surrounding was found for $\mathrm{Zn}(\mathrm{II})$ in the mixed ligand complex $\left[\mathrm{Zn}_{2}(3 \mathrm{pc})_{2}(\right.$ bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 2 \mathrm{H}_{2} \mathrm{O}$ [refcode XORVUX]. ${ }^{8}$ Coordinated next to bipyridine ligand, the pz-bridge forms $\mathrm{M}-\mathrm{N}$ bonds of comparable lengths to the above complexes [2.063 and $2.079 \AA$]. It is interesting that the crystal packing of each octahedral complex is characterized by the presence of a solvent water molecule that significantly influences the hydrogen-bonding pattern. Nevertheless, each
crystal structure is dominated by a similar $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding motif in which two coordinated water donors interact with the pair of carboxyl O acceptors and directly bond the complex units.

TABLE S-I. Crystal data, data collection and refinement details

Chemical formula	$\left[\mathrm{Cu}_{2}(\text { (4nitro-3pzc })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$
Temperature, K	200
$M r$	290.68
Space group	$P 2_{1} / n(14)$
a / \AA	$10.181(2)$
b / \AA	$6.447(1)$
c / \AA	$14.451(3)$
β / ρ°	$93.35(3)$
V / \AA^{3}	$946.9(3)$
Crystal size mm^{3}	$0.10 \times 0.10 \times 0.15$
Reflections collected $/$ unique	$5485 / 2877$
Observed reflections $[I>2 \sigma(I)]$	2692
$R_{\text {int }}$	0.0117
R-indices $[I>2 \sigma(I)]$	$R_{1}=0.0215, w R_{2}=0.0578$
R-indices (all data $)$	$R_{1}=0.0240, w R_{2}=0.0588$
Goodness-of-fit, S	1.068
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }} / \mathrm{e} \AA \AA^{-3}$	$0.453,-0.473$

TABLE S-II. FTIR ATR band positions and band assignments for $\left[\mathrm{Cu}_{2}(4\right.$ nitro-$\left.-3 \mathrm{pzc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] 2 \mathrm{H}_{2} \mathrm{O}$. References used are given in the text. $v=$ stretching, $\delta=$ deformation in-plane bending, $\gamma=$ out-of-plane bending, sh $=$ shoulder, $\mathrm{pz}=$ pyrazole ring, $\omega=$ ring stretching ($\mathrm{N}-\mathrm{N}, \mathrm{N}-\mathrm{C}, \mathrm{C}-\mathrm{C}$)

Band position, cm^{-1}	Band assignment
3507	$\mathrm{pzv}(\mathrm{N}-\mathrm{H}), \mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right)$
3234 ($\sim 2800-3600$)	$v\left(\mathrm{H}_{2} \mathrm{O}\right)$
3157	pz $\mathrm{v}(\mathrm{C}-\mathrm{H}), \mathrm{v}\left(\mathrm{H}_{2} \mathrm{O}\right)$
≈ 1675 sh	$v(\mathrm{C}=\mathrm{O})$
1604	$\delta\left(\mathrm{H}_{2} \mathrm{O}\right)$
1535	pz ω
1506	$v\left(\mathrm{NO}_{2}\right)_{\text {antisvm. }}$
1461	pz ω
1401, 1391	$\mathrm{pz} \omega$
1354	$v\left(\mathrm{NO}_{2}\right)_{\text {sym }}$.
1298	$v(\mathrm{C}-\mathrm{O})$
1207	$\mathrm{pz} \delta(\mathrm{C}-\mathrm{H}), \omega$
1137, 1110	$\mathrm{pz} \omega$
1007	$\mathrm{pz} \delta(\mathrm{C}-\mathrm{H}), \omega$
858	$\delta\left(\mathrm{NO}_{2}\right)$
806	$\delta(\mathrm{O}=\mathrm{C}-\mathrm{O})$
750	$\mathrm{pz} \gamma(\mathrm{C}-\mathrm{H})$

REFERENCES

1. S. Reinoso, B. Artetxe, O. Castillo, A. Luque, J. M. Gutierrez-Zorrilla, Acta Crystallogr., E 71 (2015) m232 (https://doi.org/10.1107/S2056989015021593)
2. X.-Y. Jiang, N.-X. Rong, R. Qian, T.-T. Qiu, Q.-X. Yao, X.-Q. Huang, Jiegou Huaxue 37 (2018) 329 (https://doi.org/10.14102/j.cnki.0254-5861.2011-1731)
3. H. Chen, C.-B. Ma, C.-N. Chen, Jiegou Huaxue 33 (2014) 1807
(https://doi.org/10.14102/j.cnki.0254-5861.2011-0359)
4. S.-Y. Zhang, Y. Li, W. Li, Inorg. Chim. Acta 362 (2009) 2247 (https://doi.org/10.1016/j.ica.2008.10.010)
5. C. Feng, Y.-H. Ma, D. Zhang, X.-J. Li, H. Zhao, Dalton Trans. 45 (2016) 5081 (https://doi.org/10.1039/C5DT04740D)
6. C. S. Hawes, P. E. Kruger, RSC Adv. 4 (2014) 15770(https://doi.org/10.1039/C4RA02147A)
7. Ž. K. Jaćimović, S. B. Novaković, G. A. Bogdanović , G. Giester, M. Kosović , E. Libowitzky, Acta Crystallogr., C 75 (2019) 255
(https://doi.org/10.1107/S2053229619001244)
8. G.-N. Liu, W.-J. Zhu, Y.-N. Chu, C. Li, Inorg. Chim. Acta 425 (2015) 28 (https://doi.org/10.1016/j.ica.2014.10.024).

[^0]: * Corresponding author. E-mail: zeljkoj@ucg.ac.me

