Stereoselective synthesis of (–)-tetrahydropyrenophorol

VYASABHATTAR RAMANUJAN, SHAIK SADIKHA and CHEBOLU NAGA SESHA SAI PAVAN KUMAR*

Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology & Research (VFSTR) University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India

(Received 23 August 2019, revised 22 June, accepted 6 July 2020)

Abstract: Tetrahydropyrenophorol, an interesting macrolide, was isolated from the plant Fagonia cretica. The total synthesis of (–)-1-tetrahydropyrenophorol was achieved in an elegant and linear manner from readily accessible racemic epoxide. The archetypal reactions include regioselective opening of the epoxide, Sharpless asymmetric dihydroxylation, and Mitsunobu cyclodimerization to construct the requisite 16-membered bis-lactone. The synthetic approach demonstrated here is very simple and could be used for the syntheses of related compounds in an economic and highly stereoselective way.

Keywords: macrolide; sharpless asymmetric dihydroxylation; Mitsunobu reaction; stereoselectivity.

INTRODUCTION

The synthesis of natural products is one of the most enthralling and exigent areas of research in chemistry.1 Macrolides are well represented in nature as both homo and heterodimers and proffer a wide variety of skeletons, ring sizes, and functional groups. Macro cyclic dilactones also have a range of biological activities, e.g., antifungal,2–4 antihelmintic,5–7 phytotoxic8–10 and antileukemic11 activity. (–)-Tetrahydropyrenophorol (Fig. 1), a new macrolide, isolated from the plant Fagonia cretica exhibits good herbicidal and moderate fungicidal activities. The structure of the (–)-tetrahydropyrenophorol (1) is a 16-membered bis-lactone having four asymmetric centres. It was explicated by spectroscopic methods and X-ray analysis.12 Originally, (–)-tetrahydropyrenophorol was synthesized by Oh and co-workers13 starting from α-D-glucopyranoside using the Yamaguchi protocol as a key step. Later Pratapreddy et al.14 accomplished the concise synthesis of tetrahydropyrenophorol from chiral epoxide. Recently, Mahesh et al.15 achieved the synthesis of tetrahydropyrenophorol from p-meth-
oxybenzyloxy-epoxide while Trost and Quintard reported the synthesis of its (+)-
-congener. In continuance of efforts on the synthesis of natural products, espe-
cially macrocyclic systems, a fastidious and stereoselective total synthesis of
(−)-tetrahydropyrenophorol is described. The Sharpless asymmetric dihydroxyl-
ation and Mitsunobu cyclodimerization were adopted as crucial steps, as des-
cribed in earlier methods. Sharpless dihydroxylation is very simple and use-
ful for the construction of new stereogenic centres and in the present case, the
yield was very good. For the cyclodimerization, the standard Mitsunobu reaction
was used in the penultimate step, but, overall, the presented synthetic strategy is
diverse and elegant. The present approach is simple and efficient compared to
other methods and could be useful for the syntheses of related compounds.

Fig. 1. Structure of (−)-tetrahydropyrenophorol (1).

EXPERIMENTAL

General methods
All chemicals and reagents, obtained from Sigma–Aldrich, Merck or Lancaster, were
used without further purification. All solvents were distilled and dried prior to use. Reactions
were monitored using Thin Layer Chromatography, performed on silica gel glass plates con-
taining 60 F-254, and visualization was attained by UV light and/or iodine indicator. 1H- and
13C-NMR spectra were recorded at 300 and 75 MHz, respectively, using CDCl3 as the sol-
vent. Chemical shifts (δ) are reported in ppm downfield from the internal TMS standard. J are
coupling constant between the multiplet (interaction between a pair of protons). ESI spectra
were recorded on a Micromass, Quattro LC using ESI+ software and ESI mode positive ion
trap detector. Melting points were determined using an electrothermal melting point appa-
ratus. The FT-IR spectra were taken on a IR spectrophotometer using NaCl optics. Optical rot-
ation values were recorded on a digital polarimeter at 25 °C.
Spectral and analytical data of the synthesized compounds are given in Supplementary
material to this paper.

Experimental procedure for the synthesized compounds

(R)-5-(4-Methoxybenzylloxy)-1-(2-vinyl-1,3-dithian-2-yl)pentan-2-ol (3). To a stirred sol-
ution of 2-vinyl dithiane (3.3 g, 22.7 mmol) in dry THF (30 mL) cooled at −78 °C, a 1.6 M
solution of n-BuLi in hexane (22.9 mL, 37.82 mmol) was added dropwise. The reaction mix-
ture was stirred at −20 °C for 1 h. After cooling to −78 °C, a solution of epoxide 5 (4.2 g,
18.91 mmol) in THF (10 mL) was added dropwise, and the mixture was kept at −30 °C for 2
h. The reaction was quenched with water (50 mL), and the mixture was extracted with Et2O
(2×100 mL). The combined extracts were washed with brine (100 mL), dried (Na2SO4), and
concentrated. The residual oil was purified by column chromatography on silica gel chroma-
tography (60–120 silica gel, 10 % EtOAc in petroleum ether) to give 3 (5.6 g, 81 %) as a col-
ourless oil.
SYNTHESIS OF TETRAHYDROPYRENOPHOROL

(R)-tert-Butyl(5-(4-methoxybenzyloxy)-1-(2-vinyl-1,3-dithian-2-yl)pentan-2-yl)oxy)diphenylsilane (6). To a stirred solution of alcohol 3 (5.1 g, 13.85 mmol) and imidazole (1.41 g, 20.77 mmol) in dry CH2Cl2 (30 mL) was added TBDPSCI (4.57 g, 16.63 mmol) at 0 °C under a nitrogen atmosphere and stirred at room temperature for 4 h. The reaction mixture was quenched with aq. NH4Cl solution (10 mL) and extracted with CH2Cl2 (2×50 mL). The combined extracts were washed with water (30 mL), brine (30 mL), dried (Na2SO4) and concentrated. The residue was purified by column chromatography (60–120 Silica gel, 5 % EtOAc in petroleum ether) to furnish 6 (6.6 g, 79 %) as a colourless liquid.

(S)-1-(2-(tert-Butyldiphenylsiloxy)-5-(4-methoxybenzyloxy)pentyl)-1,3-dithian-2-yl)ethane-1,2-diol (7). A mixture of AD-mix-β (7.1 g, 9.07 mmol) in 50 mL of t-BuOH/H2O (1:1 volume ratio) was stirred at room temperature for 15 min, and then cooled to 0 °C. To this solution was added silyl ether 6 (5.0 g, 8.25 mmol). The reaction mixture was stirred at 0 °C for 48 h and then quenched with Na2SO3 (7.5 g) at 0 °C within 0.5 h. EtOAc was added to the reaction mixture, and the aqueous layer was further extracted with twice EtOAc. The combined organic layers were dried over Na2SO4 and the solvents were evaporated. The crude product was purified by column chromatography on silica gel (hexanes/EtOAc 1:1) to give the corresponding diol 7 (4.33 g, 82 %) as a colourless oil.

The 1H-NMR spectrum of the crude dihydroxylated compound 7 was recorded to predict the diastereoselectivity. The spectrum depicted distinctive singlets at δ values 3.68 and 3.58 ppm with a ratio of ≈9:1 corresponding to the –OC6H3 group of the PMB protection. Another set of signals could be identified as triplets related to –CH2 of the secondary hydroxyl group at δ values 3.48 and 3.32 ppm, integration ratio 9:1. From this, the diastereoselectivity of dihydroxylation was assigned as 9:1.

(S)-1-(2-(tert-Butyldiphenylsiloxy)-5-(4-methoxybenzyloxy)pentyl)-1,3-dithian-2-yl)ethanol (8). To a stirred solution of diol 7 (4.1 g, 6.40 mmol) in dry dichloromethane (30 mL), triethylamine (1.74 mL, 12.8 mmol) and Bu2SnO (catalytic amount) were added. After 5 min, p-toluene sulfonyl chloride (1.21 g, 6.40 mmol) was added and the mixture stirred at room temperature for 30 min. The reaction was monitored by TLC. After completion of the reaction, the mixture was quenched by adding water (10 mL). The solution was extracted with DCM (3×20 mL) and then the combined organic phase was washed with water, dried (Na2SO4), and concentrated to give tosylate 7a.

To a stirred suspension of LAH (0.3 g, 7.68 mmol) in dry THF (5 mL), the above crude tosylate 7a in dry THF (20 mL) was added dropwise at 0 °C under a nitrogen atmosphere and the mixture stirred for 12 h at room temperature. The reaction mixture was cooled to 0 °C, treated with saturated aq. Na2SO4 solution, filtered and the filtrate was dried (Na2SO4) and concentrated. The residue was purified by column chromatography (60–120 Silica gel, 15 % EtOAc in petroleum ether) to give 8 (3.0 g, 77 %) as a colourless syrup.

tert-Butyl(R)-1-(2-(S)-1-(tert-butyldimethylsiloxy)ethyl)-1,3-dithian-2-yl)5-(4-methoxybenzyloxy)pentan-2-yl)oxy)diphenylsilane (9). A stirred solution of alcohol 8 (2.8 g, 4.48 mmol) and imidazole (0.6 g, 8.96 mmol) in dry CH2Cl2 (30 mL) was treated with TBSCI (0.80 g, 5.38 mmol) at 0 °C under a nitrogen atmosphere and stirred at room temperature for 4 h. The reaction mixture was quenched with aq. NH4Cl solution (10 mL) and extracted with CH2Cl2 (2×50 mL). The combined extracts were washed with water (30 mL), brine (30 mL), dried (Na2SO4) and concentrated. The residue was purified by column chromatography (60–120 silica gel, 5 % EtOAc in petroleum ether) to furnish 9 (2.7 g, 81 %) as a colourless liquid.

(4R,8S)-7-(tert-Butyldimethylsiloxy)4-(tert-butyldiphenylsilyloxy)octan-1-ol (10). Commercially available Raney nickel (20.0 g with water, Grade: Raney 2800 nickel from Aldrich)
as a slurry in water was weighed into a 100 mL round-bottomed flask and washed with anhydrous ethanol (10 mL) three times under a nitrogen atmosphere. Compound 9 (2.4 g, 3.25 mmol) in 25 mL ethanol was added via a syringe to the slurry mixture before hydrogen gas was bubbled through for 20 min. The mixture was heated to 80 °C and kept at that temperature for 15 h with stirring under a hydrogen atmosphere before it was allowed to attain room temperature. The liquid phase was transferred carefully using a pipette to separate it from residual flammable Raney nickel and washed with ethanol (4×8 mL). The combined liquid was concentrated and purified by column chromatography (Silica gel, 60–120 mesh, 20–25 % EtOAc in petroleum ether) to give acid 10 (1.3 g, 78 %) as a colourless oil.

\[ (+S,7S)-7-(\text{tert-Butyldimethylsilyloxy})-4-(\text{tert-Butyldiphenylsilyloxy}) \text{octanoic acid (11).} \]

To a stirred solution of 10 (1.2 g, 2.33 mmol) in CH\(_2\text{Cl}_2\):H\(_2\text{O}\) (1:1, 1 mL) TEMPO (0.12 g, 0.77 mmol) and BAIB (2.25 g, 6.99 mmol) were added at 0 °C and the mixture stirred for 2 h. The reaction mixture was diluted with water (5 mL) and extracted with CH\(_2\text{Cl}_2\) (2×20 mL). Organic layers were washed with brine (10 mL), dried (Na\(_2\)SO\(_4\)), evaporated and purified the residue by column chromatography (Silica gel, 60–120 mesh, 20–25 % EtOAc in petroleum ether) to give acid 11 (0.92 g, 75 %) as a colourless gummy oil.

\[ (+S,7S)-4-(\text{tert-Butyldiphenylsilyloxy})-7-\text{hydroxyoctanoic acid (2).} \]

To a solution of 11 (0.85 g, 1.60 mmol) in ethanol (3 mL), PPTS (0.48 g, 1.92 mmol) was added and the mixture stirred for 3 h at 50 °C. The ethanol was removed and the reaction mixture extracted with ethyl acetate (2×20 mL). The organic layers were washed with water (2×10 mL), brine (10 mL) and dried (Na\(_2\)SO\(_4\)). The solvent was evaporated and the residue purified by column chromatography (60–120 silica gel, 10 % EtOAc in petroleum ether) to furnish 2 (0.60 g, 91 %) as a colourless liquid.

\[ (5S,8R,13S,16R)-5,13-\text{Bis(tert-butyldiphenylsilyloxy)}-8,16-\text{dimethyl-1,9-dioxacycloc}
\text{hexadecane-2,10-dione (12).} \]

To a solution of 2 (0.5 g, 1.2 mmol) and Ph\(_3\)P (1.22 g, 4.8 mmol) in toluene:THF (9:1, 550 mL), DEAD (3.0 mL, 18.0 mmol) was added at −25 °C and the mixture stirred under a N\(_2\) atmosphere for 10 h. The solvent was evaporated under reduced pressure and the residue purified by column chromatography (60–120 silica gel, 10 % EtOAc in petroleum ether) to afford 12 (0.28 g, 56 %) as a colourless oil.

\[ (+)-\text{Tetrahydropyrenophorol (1).} \]

To a cooled (0 °C) solution of 12 (0.2 g, 0.25 mmol) in dry THF (2 mL) under a nitrogen atmosphere, TBAF (0.4 mL, 0.38 mmol) was added and the mixture stirred for 3 h. The reaction mixture was diluted with water (5 mL) and extracted with ethyl acetate (2×10 mL). The organic layers were washed with water (2×10 mL), brine (10 mL) and dried (Na\(_2\)SO\(_4\)). The solvent was evaporated and the residue purified by column chromatography (60–120 silica gel, 55 % EtOAc in petroleum ether) to furnish 1 (69 mg) in 87 % yield as a white solid.

RESULTS AND DISCUSSION

The retrosynthesis of 1 envisioned that it could be produced from the hydroxy-acid 2 via cyclodimerization under the Mitsunobu reaction conditions followed by deprotonation of silyl ethers. Hydroxy-acid 2 is the vital fragment could be attained by a short sequence involving Sharpless asymmetric dihydroxylation of alcohol 3 followed by reductive elimination using lithium aluminium hydride. The alcohol fragment 3 could be obtained from (+)-epoxide 4 through regioselective ring-opening with 2-vinyl-1,3-dithiane (Scheme 1).
SYNTHESIS OF TETRAHYDROPYRENOPHOROL

From the retrosynthetic analysis, it was envisaged that hydroxy acid 2 is the crucial fragment for the synthesis of tetrahydropyrenophorol. Consequently, the synthesis of the hydroxy acid segment 2 was instigated from the known (±)-epoxide 4 (Scheme 2), which was converted into enantiopure epoxide 5 using a literature protocol.19

Reagents and conditions. a) 2-vinyl-1,3-dithiane, n-BuLi, dry THF, –78 °C, 3 h, 81 %; b) TBDPSCI, imidazole, CH₂Cl₂, rt, 4 h, 79 %; c) AD-mix-β, t-BuOH/H₂O, 0 °C to rt, 32 h, 82 %; d) p-TsCl, Bu₂SnO, Et₃N, rt, 30 min; e) LAH, THF, 0 °C to rt, 3 h, 77 %; f) TBDSCI, imidazole, CH₂Cl₂, rt, 3 h, 81 %; g) Raney Ni, EtOH, 80 °C, 4 h, 78 %; h) TEMPO, BIAB, aq CH₂Cl₂, 0 °C, 2 h, 75 %; i) PPTS, EtOH, 50 °C, to rt, 3 h, 91 % j) Ph₃P, DEAD, toluene:THF (10:1) –25 °C, 10 h, 56 %; k) TBAF, THF, 0 °C to rt, 3 h, 87 %.

Scheme 2. Synthesis of (−)-tetrahydropyrenophorol.

After having the requisited epoxide 5 that upon regioselective ring-opening with 2-vinyl-1,3-dithiane in the presence of n-BuLi in dry THF at –78 °C for 3 h
provided alcohol 3 in 81 % yield, which on ensuing silylation with TBDPSCl gave silyl ether 6 in 79 % yield. Next, the terminal olefin in silyl ether 6 was then subjected to Sharpless asymmetric dihydroxylation\textsuperscript{14,20} with AD-mix-β, affording diol 7 (dr 9:1) in 82 % yield. The diastereomeric ratio was assigned based on the crude \textsuperscript{1}H-NMR spectrum of 7 (Supplementary material). The mechanism of the sharpless dihydroxylation originates through the generation of OsO\textsubscript{4}–ligand complex. The alkene on cycloaddition with the osmium complex creates the cyclic intermediate and upon basic hydrolysis liberates the requisite diol. The ligand in AD-mix-β (\((\text{DHQD})_2\text{PHAL}\) used as chiral ligand) accelerates the reaction and transfers the chirality.\textsuperscript{21,22}

Monotosylation of diol 7 was attained with tosyl chloride in the presence of Bu\textsubscript{2}SnO and Et\textsubscript{3}N in CH\textsubscript{2}Cl\textsubscript{2} furnishing the corresponding primary tosylate 7a in quantitative yield. Next, tosylate 7a was subjected to reductive elimination using lithium aluminium hydride in dry THF, producing the secondary alcohol 8 in 77 % yield. Subsequent silylation with TBSCl and imidazole in CH\textsubscript{2}Cl\textsubscript{2} gave 9 in 81 % yield. In the next stage, the dithiane moiety and PMB group in compound 9 were removed in a single step using Raney Ni\textsuperscript{23} to provide alcohol 10 in 78 % yield.

The resulting alcohol 10 was then treated with 2,2,6,6-tetramethylpiperidinoxy (TEMPO) and [bis(acetoxy)iodo]-benzene (BAIB)\textsuperscript{24} in aq. CH\textsubscript{2}Cl\textsubscript{2} at 0 °C to room temperature for 2 h to obtain the desired acid 11 in a single step. Selective desilylation of 11 with PPTS in ethanol afforded hydroxy acid 2 in 91 % yield.

After completion of the synthesis of fragment 2, the focus shifted to macrocyclization and further transformations to complete the synthesis of the target compound. Accordingly, hydroxy-acid 2 on cyclodimerization under standard Mitsunobu conditions\textsuperscript{25} (Ph\textsubscript{3}P and DEAD) at –25 °C for 10 h furnished 12 in 56 % yield. Desilylation of 12 with TBAF in dry THF achieved \((-\text{)-tetrahydropyrenophorol 1 in 87 % yield, the spectral and optical rotation data were comparable with reported data.}^{12}

**CONCLUSIONS**

In the study, total synthesis of \((-\text{)-tetrahydropyrenophorol macrodiolide was consummated in a simple and divergent way starting from racemic epoxide. Sharpless asymmetric dihydroxylation and Mitsunobu cyclodimerization were used as typical reactions. Good yields, smaller number of steps, and readily available materials are the salient features of the synthetic approach. The syntheses of related macrodiolides are underway in our laboratory and will be reported in due course.**

**SUPPLEMENTARY MATERIAL**

\(\textsuperscript{1}\text{H- and }\textsuperscript{13}\text{C-NMR spectra and spectral data for the synthesized compounds are available electronically at the pages of journal website: https://www.shd-pub.org.rs/index.php/JSCS/index, or from the corresponding author on request.}^{12}\)
Acknowledgements. VB, SS and CHNSSP are thankful to VC, Dean R & D, VFSTRU for incessant support.

References
   https://doi.org/10.24820/ark.5550190.p010.316

    https://dx.doi.org/10.1002/anie.201203035


    https://doi.org/10.24820/ark.5550190.p010.703

    https://doi.org/10.1016/j.tetlet.2008.02.064

    https://doi.org/10.1021/cr00032a009

    https://doi.org/10.1021/jo00015a001


    https://doi.org/10.1002/chem.200600290

    https://doi.org/10.1021/jo981316g

    https://doi.org/10.1002/hc.19770600838.