1	
2	SUPPLEMENTARY MATERIAL TO
3	Study of Raw and Modified Carbon Molecular Sieves Using Waste Engine Oil for
4	Carbon Dioxide and Methane Adsorption
5	
6	Reza Zahedi ¹ , Hossein Ghafourian ^{*2} , Yahya Zamani ³ , Shahrzad Khoramnejhadian ¹ , Reza
7	$\mathrm{Dabbagh}^4$
8	¹ Department of environment, Damavand Branch, Islamic Azad University, Damavand,
9	² Department of environment Engineering, Tehran North Branch, Islamic Azad University,
10	Tehran, Iran, ³ Gas research division Research Institute of Petroleum Industry (RIPI), Tehran,
11	Iran, ⁴ Materials & Nuclear Fuel Research School, Nuclear Sciences & Technology Research
12	Institute, (NSTRI), Tehran, Iran
13	The results of BET analysis indicate that the acid-treated CMS (A-3) with a granulation size of
14	600-1180 microns has more surface area, volume and pore size as compared to non-granulated,
15	non-acid-treated, unmodified CMS (R). The highest amounts of carbon dioxide and methane
16	adsorption were obtained for CMS $_{(A-3)}$ sample (0.925 CO ₂ /g adsorbent and 0.353 mmol CH ₄ /g
17	adsorbent for carbon dioxide and methane, respectively).
18	

19 Table VI. The results of the effects of modifying the adsorbent on the capacity of carbon dioxide and

20 methane adsorption

CO	CH ₄						
CMS (A-2-T) < CMS	CMS (A-2-T) < CMS (A-2-K) < CMS(A-2)			CMS (A-2-T) < CMS (A-2-K) < CMS(A-2)			
CMS (A-2-T)	CMS (A-2-K)	CMS _(A-2)	CMS (A-2-T)	CMS (A-2-K)	CMS _(A-2)		
0.381	0.477	0.639	0.114	0.191	0.343		
CMS (A-3-K) < CMS	CMS (A-3-K) < CMS (A-3-T) < CMS(A-3)				CMS (A-3-K) < CMS (A-3-T) < CMS(A-3)		
CMS (A-3-K)	CMS (A-3-T)	CMS _(A-3)	CMS (A-3-K)	CMS (A-3-T)	CMS _(A-3)		
0.610	0,629	0.925	0.248	0.343	0.353		
$CMS_{(R-2-K)} < CMS$	CMS (R-2-K) < CMS (R-2-T) < CMS(R-2)				CMS (R-2-K) < CMS (R-2-T) < CMS(R-2)		
CMS (R-2-K)	CMS (R-2-T)	$CMS_{(R-2)}$	CMS (R-2-K)	CMS (R-2-T)	CMS _(R-2)		
0.532	0.534	0.620	0.114	0.165	0.340		
$CMS_{(R-3-K)} < CMS$	CMS (R-3-K) < CMS (R-3-T) < CMS(R-3)			CMS (R-3-K) < CMS (R-3-T) < CMS(R-3)			
CMS (R-3-K)	CMS (R-3-T)	$CMS_{(R-3)}$	CMS (R-3-K)	CMS (R-3-T)	$CMS_{(R-3)}$		
0.410	0.524	0.600	0.095	0.162	0.276		

21

^{*} Corresponding author. E-mail: h_ghaforian@iau-tnb.ac.ir