

J. Serb. Chem. Soc. 85 (6) S279–S313 (2020)

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO The effect of yeast extract addition on bread quality parameters

VLADIMIR FILIPOVIĆ¹, JELENA FILIPOVIĆ², VESNA VUCUROVIĆ¹*#, VESNA RADOVANOVIĆ¹, MILENKO KOŠUTIĆ², NEBOJŠA NOVKOVIĆ³ and NATAŠA VUKELIĆ³

¹University of Novi Sad, Faculty of Technology, Bul. cara Lazara 1, 21000 Novi Sad, Serbia, ²University of Novi Sad, Institute of Food Technology, Bul. cara Lazara 1, 21000 Novi Sad, Serbia and ³University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia

J. Serb. Chem. Soc. 85 (6) (2020) 737-750

TABLE S-I. Average values and standard deviations of the sensory analysis of the bread with yeast extract

Sam-		Appea	arance		Taste			
ple No.	Charac- teristics	Crust colour intensity	Crumb colour intensity	Colour unifor- mity	Chara- cteristic	Sweet	Sour	Salty
0	5.1±0.3 a	2.1±0.1 a	2.0±0.1 a	8.1±0.1 °	9.0±0.0 ^h	1.0±0.0 a	1.0±0.0 a	1.0±0.0 a
1	6.1±0.2 °	$4.0{\pm}0.0$ d	4.2±0.2 ^b	7.9±0.1 °	$8.0{\pm}0.0$ g	$1.1{\pm}0.1$ a	1.0±0.0 a	1.0±0.0 a
2	5.0±0.0 a	3.2±0.2 ^b	4.1 ± 0.1 b	$8.0{\pm}0.0$ °	$8.1{\pm}0.1$ g	1.0±0.0 ^a	1.0±0.0 a	3.2±0.2 ^b
3	6.0±0.0 °	4.1±0.3 d	4.0±0.3 ^b	$8.0{\pm}0.0$ °	3.1±0.3 ab	2.0±0.0 b	2.0±0.0 ^b	2.0±0.0 °
4	6.5 ± 0.5 d	$4.0{\pm}0.0$ d	4.1 ± 0.1 ^b	$8.0{\pm}0.0$ °	$5.0{\pm}0.0$ f	2.1±0.2 bc	2.0±0.0 ^b	$4.0{\pm}0.0$ d
5	5.5±0.4 ^b	3.5±0.2 °	6.0±0.0 ^{cd}	$8.1{\pm}0.1$ c	3.9±0.1 °	3.1 ± 0.1^{d}	$3.9 \pm .01^{d}$	2.1±0.2 ^b
6	7.1±0.1 e	7.1±0.1 g	5.9±0.1 ^{cd}	$8.0{\pm}0.0$ °	3.2±0.2 ^b	2.2±0.2 °	2.0±0.0 ^b	2.0±0.0 ^b
7	6.5±0.2 d	6.9±0.1 g	6.0±0.0 ^{cd}	$8.0{\pm}0.0$ °	$4.1{\pm}0.1$ d	4.3±0.3 e	4.1±0.1 e	3.1±0.1 °
8	$7.5\pm0.2^{\text{f}}$	5.5±0.5 ^e	5.8±0.2 °	$8.0{\pm}0.0$ °	4.5±0.1 e	$3.0{\pm}0.0$ d	$4.0{\pm}0.0$ de	5.2±0.2 e
9	$8.1{\pm}0.1$ g	$8.0{\pm}0.0$ h	8.1±0.1 e	8.1 ± 0.1 °	3.1±0.1 ab	3.1 ± 0.1 d	3.2±0.2 °	5.8±0.2 g
10	7.2±0.2 °	$6.0{\pm}0.5~{\rm f}$	6.1 ± 0.3 d	$8.0{\pm}0.0$ °	$3.1{\pm}0.3~^{ab}$	8.1 ± 0.1 f	$7.0{\pm}0.0^{\text{f}}$	$4.0{\pm}0.0$ d
11	7.5 ± 0.2 f	9.5±0.5 ^j	7.9±0.1 e	7.9±0.1 °	3.0±0.0 ^a	9.5±0.2 ⁱ	$6.9{\pm}0.1~{\rm f}$	3.1±0.1 °
12	8.1 ± 0.1 g	9.9±0.1 ^k	8.1±0.1 e	7.5±0.1 ^b	3.2±0.2 ^b	$8.5{\pm}0.2$ g	$8.0{\pm}0.1$ g	5.5 ± 0.2 f
13	$8.0{\pm}0.0$ g	$9.0{\pm}0.0^{i}$	8.0±0.0 e	7.2±0.2 ^a	$3.1{\pm}0.1~^{ab}$	9.0±0.0 ^h	$8.1{\pm}0.1$ g	$6.2{\pm}0.2$ h

^{*} Corresponding author. E-mail: vvvesna@uns.ac.rs

FILIPOVIĆ et al.

TABLE S-I. Average values and standard deviations of the sensory analysis of the bread with yeast extract

Sam-	ama Aroma					Text	Texture	
ple No.	Charac- teristic	Sour	Yeast	Pungent	Firmness	Elasticity	Wall thickness	Pores unifor- mity
0	8.8±0.2 ⁱ	1.0±0.0 a	2.1±0.1 a	3.2±0.2 °	7.8±0.2 ⁱ	2.1±0.1 a	8.8±0.2 k	2.5±0.5 b
1	7.6±0.1 ^g	1.1±0.1 ^a	2.0±0.0 a	2.2±0.1 a	2.5±0.5 ^b	4.5 ± 0.3 d	$3.1{\pm}0.1$ b	7.0±0.0 ^e
2	$8.5{\pm}0.5$ h	1.0±0.0 a	2.0±0.0 a	2.5±0.1 b	7.5±0.5 ^h	2.5±0.5 b	7.4±0.4 ⁱ	3.5±0.5 °
3	$3.0{\pm}0.0$ ^a	2.1±0.1 bc	3.2±0.2 °	2.6±0.1 b	2.1±0.1 a	$8.5{\pm}0.3$ h	2.5±0.5 a	$8.5{\pm}0.5^{j}$
4	$4.7{\pm}0.3$ f	2.0±0.0 ^b	3.0±0.2 ^b	3.2±0.2 °	$5.0{\pm}0.0^{\text{f}}$	$5.2\pm0.2^{\text{f}}$	5.5 ± 0.5 f	6.5 ± 0.5 d
5	3.7±0.2 °	3.7±0.3 ^e	5.2±0.2 ^d	5.1±0.1 e	8.5±0.3 ^j	2.5±0.5 b	8.0±0.0 ^j	2.2±0.2 a
6	3.0±0.0 a	2.2±0.2 °	5.5±0.5 e	5.0±0.0 e	2.6±0.4 ^b	4.5 ± 0.5 d	$3.2{\pm}0.2^{b}$	7.8±0.2 ^h
7	$3.9{\pm}0.1$ d	$4.0{\pm}0.0^{\text{ f}}$	$6.1{\pm}0.1$ g	$4.8{\pm}0.2$ d	5.1 ± 0.1 f	$8.8{\pm}0.1^{i}$	5.0±0.0 e	7.5±0.1 g
8	4.4±0.1 e	3.8±0.2 e	$5.9{\pm}0.1$ f	$6.1 \pm 0.1 \text{ f}$	7.5±0.5 ^h	2.5±0.5 b	6.8±0.2 ^h	3.5±0.0 °
9	3.0±0.0 a	$3.0{\pm}0.0$ d	7.2±0.2 ⁱ	7.5±0.5 ⁱ	$3.2{\pm}0.2$ d	5.0±0.0 e	3.5±0.5 °	$8.0{\pm}0.0^{i}$
10	$3.0{\pm}0.0$ ^a	7.1±0.1 g	$6.9{\pm}0.1$ h	7.2±0.2 ^h	5.9±0.1 g	$5.5{\pm}0.5$ g	$6.5{\pm}0.5~^{g}$	6.5 ± 0.4 d
11	2.9±0.1 a	7.0±0.0 g	7.5±0.2 ^j	$7.0{\pm}0.0$ g	3.0±0.0 °	4.6 ± 0.4 d	3.5±0.5 °	7.0±0.0 ^e
12	$3.3{\pm}0.3^{b}$	8.2±0.2 ^h	$8.1{\pm}0.1$ k	7.5±0.2 ⁱ	5.1 ± 0.1 f	3.5±0.5 °	5.1±0.1 e	$7.2{\pm}0.2$ f
13	3.3 ± 0.3 b	8.3 ± 0.3 h	$8.0{\pm}0.0$ k	7.6±0.3 ⁱ	3.5±0.5 e	$4.5{\pm}0.5$ d	$4.0{\pm}0.0$ d	7.5 ± 0.0 g

^{a-k} Different letters in superscript in the same table column for the same sensory descriptor indicate statistically significant difference between the values, at a level of significance of p < 0.05 (based on post hoc Tukey HSD test)

TABLE S-II. Regression coefficients of SOP of bread with the yeast extract model for chemical composition; * – statistically significant at p < 0.05 level

,		8	F · · · ·		
	Proteins	Starch	Fat	Total sugars	Cellulose
β_0	19.48823*	60.25488*	2.233773*	0.112927	2.527256*
β_1	0.66427	-0.22688	-0.026401*	0.210073	-0.037756
β_{11}	0.09820	0.01303	0.000220	0.009180	-0.002332
β_2	-2.75701	2.52659	0.130632*	2.611951	0.255671
β_{22}	0.60488	-1.39415	-0.064125*	-0.810488	-0.128293
β_3	-0.38412	-0.86644*	-0.026597*	1.069037*	-0.028628
β_{33}	0.00505	-0.00234	0.000220*	-0.008705	-0.000283
β_{12}	-0.20322	-0.34146*	0.001035	-0.182878	0.019073
β_{13}	-0.01312	-0.00095	0.000443*	-0.016288	0.000307
β_{23}	0.09739	0.20727*	0.001075*	-0.015439	0.006537
R^2	0.975	0.998	0.999	0.999	0.935
Kind of local extreme	max	max	min	min	max
Calculated critical value of quantity, % d.m.	22.09	61.39	1.97	1.55	2.65
Quantity of yeast extract, % on flour d.m.	5	0	5	5	0
Quantity of Salt, % on flour d.m.	1	1	1	2	1
Quantity of Sugar, / % on flour d.m.	0	0	10	0	0

1 '		1			
	Zn	Cu	Mg	Ca	Fe
β_0	21.05561*	5.905732*	238.2642*	95.7865*	43.74018*
β_1	0.56339*	-0.064232*	26.4998*	11.3420*	0.63632
β_{11}	0.01643	-0.001405	-0.1098	-0.4297	-0.04075
β_2	3.05707*	0.345488	80.8633	-18.2048	1.78762
β_{22}	-1.22927*	-0.185122*	-28.3049	5.5468	-0.84878
β_3	-0.19630*	-0.082116*	-4.1025	-0.9203	-0.66209*
β_{33}	0.00191	0.002049*	0.0308	-0.0045	0.01511
β_{12}	0.04732	0.020780	-2.4269	-0.3957	-0.10380
β_{13}	-0.00327	0.001078	-0.2997	-0.0220	-0.01158
β_{23} R^2	-0.02634	0.002390	0.4837	0.0511	0.06510
$\vec{R^2}$	0.999	0.998	0.996	0.994	0.981
Kind of local extreme	max	max	max	max	max
Calculated critical value of quantity, mg kg ⁻¹	26.49	6.07	409.74	127.12	46.32
Quantity of yeast extract, % on flour d.m.	5	0	5	5	5
Quantity of salt, % on flour d.m.	1.34	1	1.21	1	1
Quantity of sugar, % on flour d.m.	0	0	0	0	0

TABLE S-III. Regression coefficients of SOP of bread with yeast extract model for mineral composition; * – statistically significant at p < 0.05 level

TABLE S-IV. Regression	coefficients of SC	P of bread with	yeast extract model for
instrumental colour and brea	aderumb quality; * –	statistically signifi	cant at $p < 0.05$ level

	L*	a*	b*	C*	Bread crumb quality
β_0	64.22543*	4.427622*	19.18201*	16.53756*	-2.29909
β_1°	0.25357	-0.382622	0.98349*	0.23244	-0.05341
β_{11}	-0.03402	0.006966	-0.00506	-0.02772	0.03624
β_2	0.05945	1.510915	-2.90616	2.85171	5.68811
β_{22}	-0.09049	-0.485854	1.38341	-0.89293	-1.84390
β_3	0.30854	0.013939	-0.05651	0.09072	0.65704*
β_{33}	-0.03660	-0.000359	0.00003	-0.01013	-0.02344
β_{12}	0.47912	-0.006537	-0.29585	0.14273	0.14098
β_{13}	-0.03149	-0.001254	0.01321	0.01147	-0.05590
β_{23} R^2	0.03056	-0.008268	0.01307	-0.01463	-0.05451
R^2	0.937	0.979	0.965	0.969	0.932
Kind of local extreme	max	max	max	max	max
Calculated critical value of quantity, mg kg ⁻¹	69.50	5.60	21.10	20.92	4.75
Quantity of yeast extract, % on flour d.m.	5	0	5	5	5
Quantity of salt, % on flour d.m.	2	1.54	2	1.95	1.64
Quantity of sugar, % on flour d.m.	2.90	1.67	10	5.90	6.14

FILIPOVIĆ et al.

Taste Appearance Crumb Chara-Crust colour Colour Characolour Sweet Sour Salty cteristics intensity uniformity cteristic intensity β_0 7.33780* -5.59817 8.079878* 1.099.573 -498.720 0.91159 0.41220 -241.7070.350122* 0.29817 0.21720 β_1 0.21220 113.280 -2.59073* 0.52707 0.44341 β_{11} 0.00741 -0.03951 -0.11941 -0.029366 0.11220 0.26741* 0.12878 0.00976 β_2 -409.146 11.27.622 394.146 -0.138415 -214.451 8.63354* 502.195 -105.061 β_{22} 178.537 -3.58780 -128.537 0.065854 -2.91463* -158.049 154.390 0.10488 -0.16579 β_3 0.19110 0.36159 -0.11860 -0.077439-0.167870.09110 -0.00146 . β₃₃ 0.00585 0.00112 0.00415 0.003659 -0.01695 -0.02215-0.017800.00144 β_{12} 0.09366 0.60195 0.18634 -0.161463 0.60878 0.03366 0.01512 -0.24098 β_{13} -0.00663 -0.00980 -0.01537 -0.006146 0.10488* -0.03463 0.00151 0.06390* β_{23} R^2 -0.09317 -0.10902 0.13317 0.029268 -0.06561 0.12683 0.10756 0.02951 0.875 0.952 0.996 0.936 0.926 0.912 0.967 0.968 Kind of local max max min max max max min min extreme Calculated critical value of quantity, 8.78 10.28 3.07 8.31 8.96 9.57 1.02 0.19 mg kg⁻¹ Quantity of 5 0 3.21 0 0 0 yeast extract, % 5 5 on flour d.m. Quantity of salt, 2 1.84 1 1 1 1.57 1 1 % on flour d.m. Quantity of 10 10 0 0 2.63 sugar, % on 0 0 10 flour d.m. Aroma Texture Chara-Wall Pores uni-Sour Elasticity Yeast Pungent Firmness cteristic thickness formity 971.037 -239.024 0.548171 7.71768* 744.207 -15.6585* -451.707 1.123.415 β_0 0.32024 1.17732* 14.185 0.78585 -0.17793 -2.72037* 1.661829* 134.293 β_1 β_{11} 0.12810 0.16127 -0.140488* -0.03395-0.14078-0.1636 -0.045560.05278 β_2 -0.43476 497.317 1.873.780 -692.988 -0.44695 25.3610* -494.390 1.022.195 β_{22} -0.39756 -8.6902* -156.829 -0.512195 225.122 0.58049 186.098 -338.049 β_3

1.1993*

-0.0929*

-0.1224

-0.1202*

0.1588

0.920

max

8.58

1.21

1.51

6.97

-110.707

0.01261

-0.85024

0.14298*

0.21488

0.900

min

0.49

0

1

10

1.21604*

-0.04680

0.33512

-0.09249

-0.09244

0.942

max

9.36

0

1.378

10

TABLE S-V. Regression coefficients of SOP of bread with yeast extract model for sensory
characteristics; * – statistically significant at $p < 0.05$ level

Available on line at www.shd.org.rs/JSCS/

-0.22268

-0.01298

0.62439

0.11644*

-0.07780

0.957

max

8.88

0

1

0

 β_{33}

 β_{12}

 β_{13}

 β_{23} R^2

Kind of local

extreme Calculated critical

value of quantity, mg kg⁻¹ Quantity of yeast extract, %

on flour d.m. Quantity of salt,

% on flour d.m. Quantity of sugar / % on

flour d.m.

0.07012

-0.01768

0.05707

0.00171

0.06854

0.970

min

1.01

0

1

0

-0.116585

0.003878

0.058049

-0.008195

0.119024*

0.998

min

1.91

0

1

0

-0.52384*

0.01651

-0.08780

0.01122

0.26610*

0.989

min

2.01

0

1.15

6.61

-114.104

0.01380

-0.93512

0.15449*

0.18244

0.881

min

-0.63

0

1

10

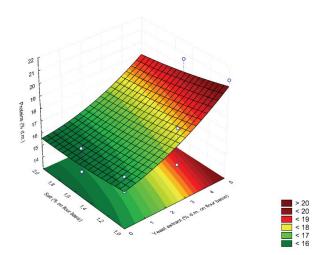


Fig. S-1a. Graphical presentation of the modelled dependence of the protein content from yeast extract and salt addition, with a level of sugar addition of 5 %.

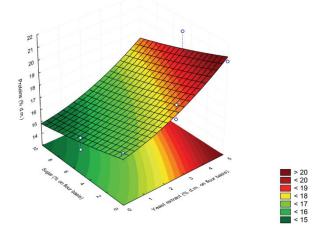


Fig. S-1b. Graphical presentation of the modelled dependence of the protein content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

S283

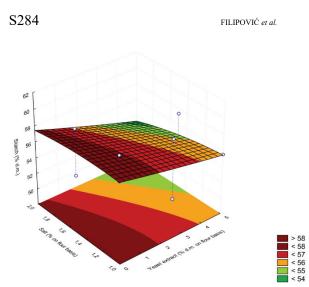


Fig. S-2a. Graphical presentation of the modelled dependence of the starch content on yeast extract and salt addition, at a level of sugar addition of 5 %.

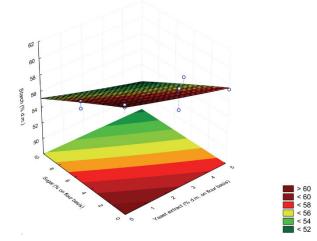


Fig. S-2b. Graphical presentation of the modelled dependence of the protein starch on the yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

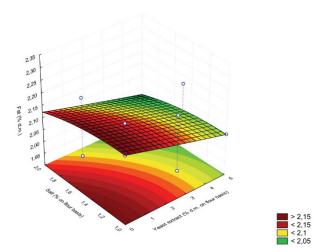


Fig. S-3a. Graphical presentation of the modelled dependence of the fat content on yeast extract and salt addition, at a level of sugar addition of 5 %.

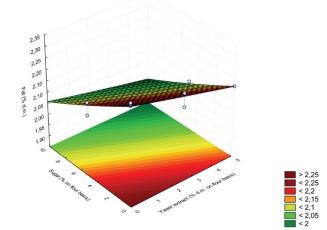


Fig. S-3b. Graphical presentation of the modelled dependence of the fat content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

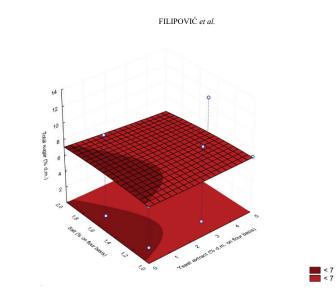


Fig. S-4a. Graphical presentation of the modelled dependence of the total sugars content on yeast extract and salt addition, at a level of sugar addition of 5 %.

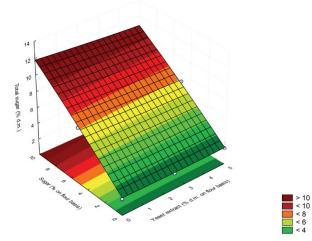


Fig. S-4b. Graphical presentation of the modelled dependence of the total sugars content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

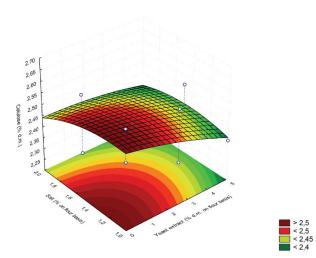


Fig. S-5a. Graphical presentation of the modelled dependence of the cellulose content on yeast extract and salt addition, at a level of sugar addition of 5 %.

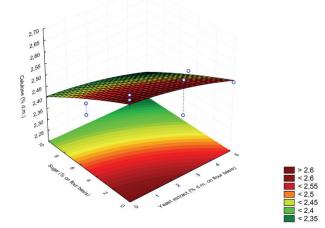


Fig. S-5b. Graphical presentation of the modelled dependence of the cellulose content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

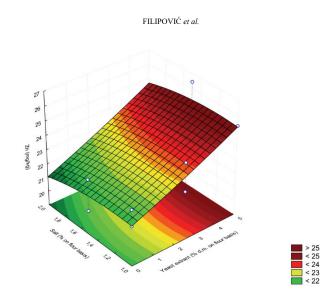


Fig. S-6a. Graphical presentation of the modelled dependence of the Zn content on yeast extract and salt addition, at a level of sugar addition of 5 %.

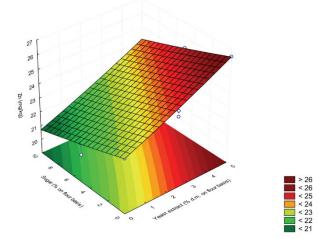


Fig. S-6b. Graphical presentation of the modelled dependence of the Zn content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

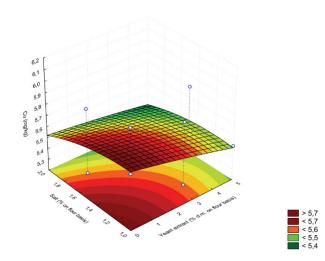


Fig. S-7a. Graphical presentation of the modelled dependence of the Cu content on yeast extract and salt addition, at a level of sugar addition of 5 %.

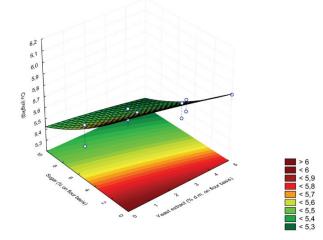


Fig. S-7b. Graphical presentation of the modelled dependence of the Cu content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

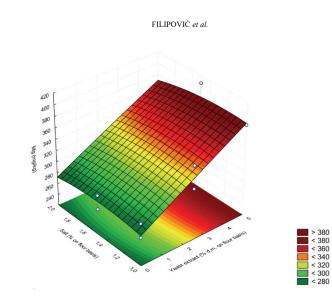


Fig. S-8a. Graphical presentation of the modelled dependence of the Mg content on yeast extract and salt addition, at a level of sugar addition of 5 %.

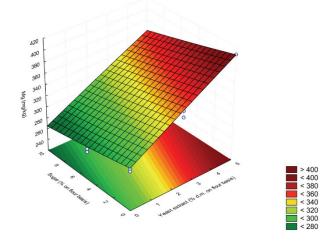


Fig. S-8b. Graphical presentation of the modelled dependence of the Mg content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

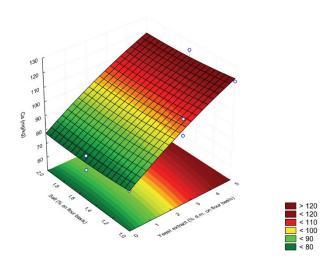


Fig. S-9a. Graphical presentation of the modelled dependence of the Ca content on yeast extract and salt addition, at a level of sugar addition of 5 %.

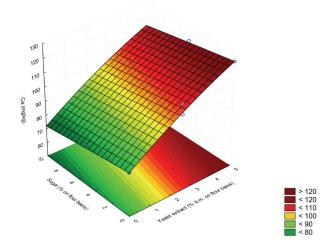


Fig. S-9b. Graphical presentation of the modelled dependence of the Ca content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

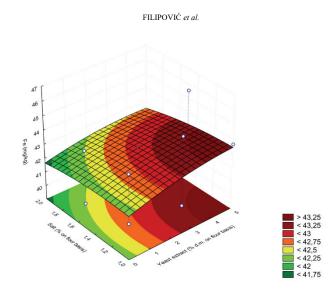


Fig. S-10a. Graphical presentation of the modelled dependence of the Fe content on yeast extract and salt addition, at a level of sugar addition of 5 %.

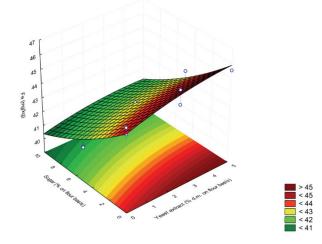


Fig. S-10b. Graphical presentation of the modelled dependence of the Fe content on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

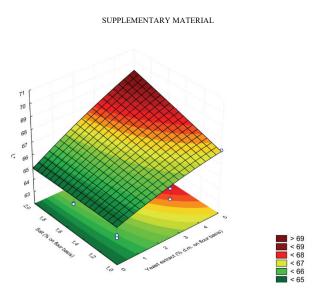


Fig. S-11a. Graphical presentation of the modelled dependence of L* on yeast extract and salt addition, at a level of sugar addition of 5 %.

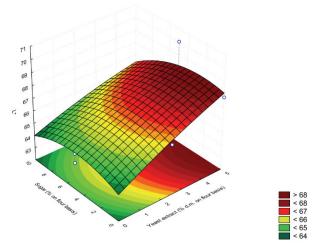


Fig. S-11b. Graphical presentation of the modelled dependence of L* on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

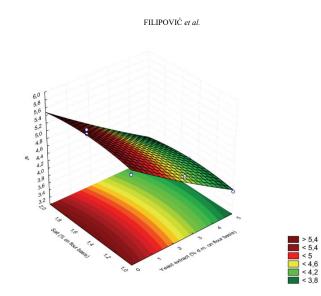


Fig. S-12a. Graphical presentation of the modelled dependence of a* on yeast extract and salt addition, at a level of sugar addition of 5 %.

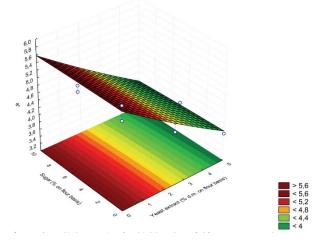


Fig. S-12b. Graphical presentation of the modelled dependence of a* on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

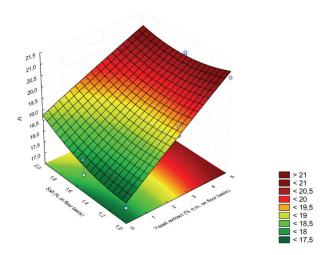


Fig. S13a. Graphical presentation of the modelled dependence of b* on yeast extract and salt addition, at a level of sugar addition of 5 %.

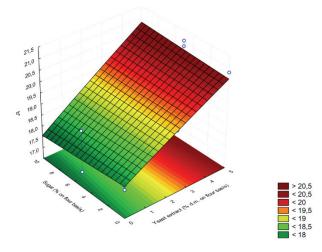


Fig. S-13b. Graphical presentation of the modelled dependence of b* on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

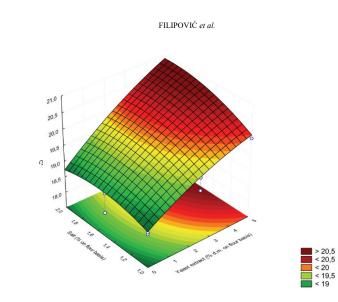


Fig. S-14a. Graphical presentation of the modelled dependence of C* on yeast extract and salt addition, at a level of sugar addition of 5 %.

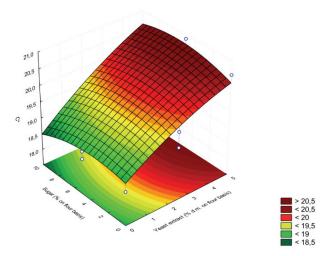


Fig. S-14b. Graphical presentation of the modelled dependence of C* on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

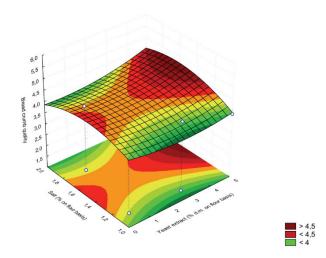


Fig. S-15a. Graphical presentation of the modelled dependence of Bread crumb quality on yeast extract and salt addition, at a level of sugar addition of 5%.

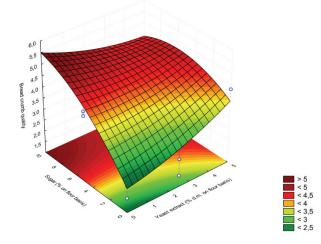


Fig. S-15b. Graphical presentation of the modelled dependence of Bread crumb quality on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

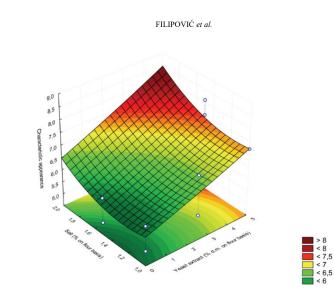


Fig. S-16a. Graphical presentation of the modelled dependence of Characteristic appearance on yeast extract and salt addition, at a level of sugar addition of 5 %.

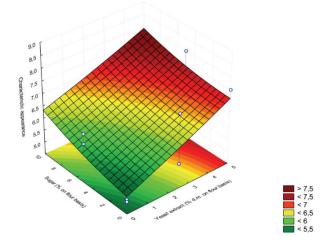


Fig. S-16b. Graphical presentation of the modelled dependence of the Characteristic appearance on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

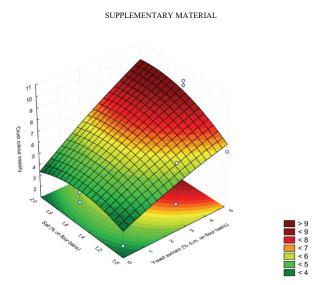


Fig. S-17a. Graphical presentation of the modelled dependence of Crust colour intensity on yeast extract and salt addition, at a level of sugar addition of 5 %.

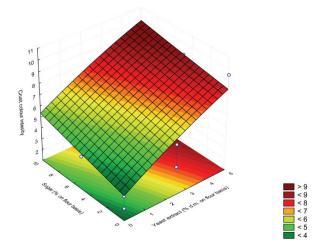


Fig. S-17b. Graphical presentation of the modelled dependence of the Crust colour intensity on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

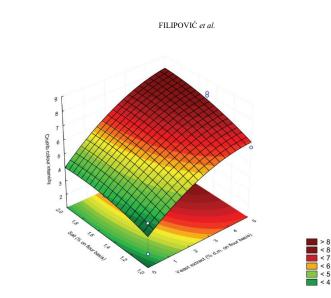


Fig. S-18a. Graphical presentation of the modelled dependence of the Crumb colour intensity on yeast extract and salt addition, at a level of sugar addition of 5 %.

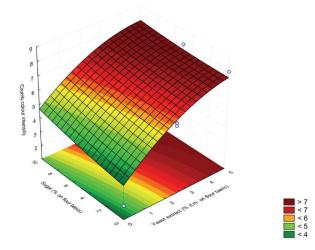


Fig. S-18b. Graphical presentation of the modelled dependence of Crumb colour intensity on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

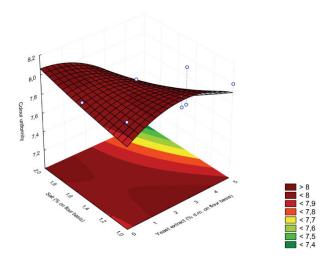


Fig. S-19a. Graphical presentation of the modelled dependence of Colour uniformity on yeast extract and salt addition, at a level of sugar addition of 5 %.

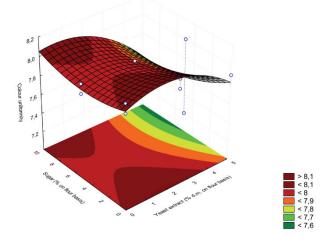


Fig. S-19b. Graphical presentation of the modelled dependence of Colour uniformity on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

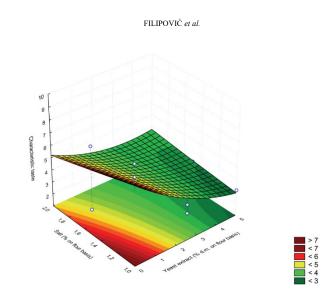


Fig. S-20a. Graphical presentation of the modelled dependence of the Characteristic taste on yeast extract and salt addition, at a level of sugar addition of 5 %.

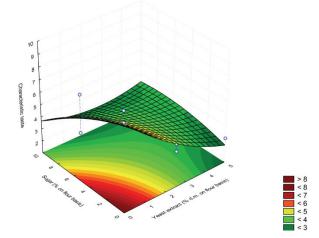


Fig. S-20b. Graphical presentation of the modelled dependence of the Characteristic taste on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

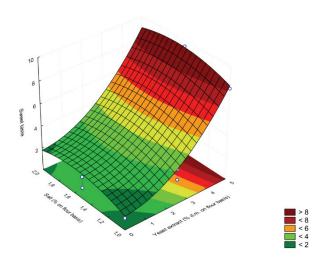


Fig. S-21a. Graphical presentation of the modelled dependence of Sweet taste on yeast extract and salt addition, at a level of sugar addition of 5 %.

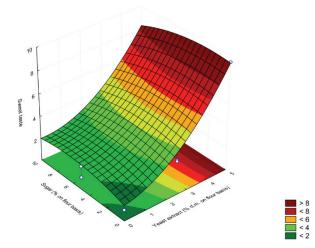


Fig. S-21b. Graphical presentation of the modelled dependence of Sweet taste on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

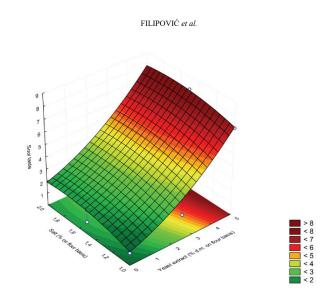


Fig. S-22a. Graphical presentation of the modelled dependence of Sour taste on yeast extract and salt addition, at a level of sugar addition of 5 %.

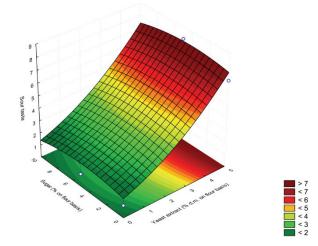


Fig. S-22b. Graphical presentation of the modelled dependence of Sour taste on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

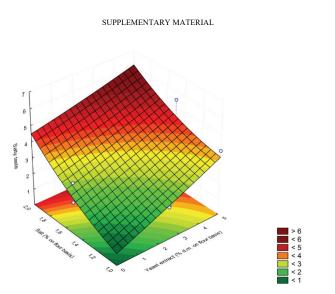


Fig. S-23a. Graphical presentation of the modelled dependence of Salty taste on yeast extract and salt addition, at a level of sugar addition of 5 %.



Fig. S-23b. Graphical presentation of the modelled dependence of Salty taste on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

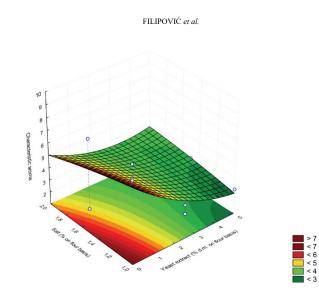


Fig. S-24a. Graphical presentation of the modelled dependence of Characteristic aroma on yeast extract and salt addition, at a level of sugar addition of 5 %.

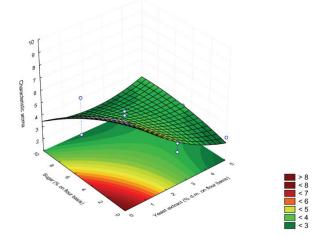


Fig. S-24b. Graphical presentation of the modelled dependence of Characteristic aroma on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

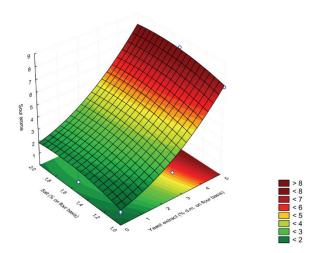


Fig. S-25a. Graphical presentation of the modelled dependence of Sour aroma on yeast extract and salt addition, at a level of sugar addition of 5 %.

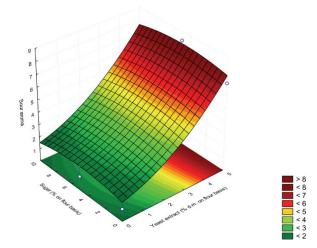


Fig. S-25b. Graphical presentation of the modelled dependence of Sour aroma on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

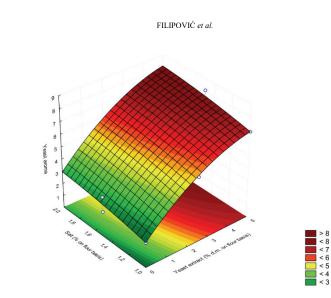


Fig. S-26a. Graphical presentation of the modelled dependence of Yeast aroma on yeast extract and salt addition, at a level of sugar addition of 5 %.

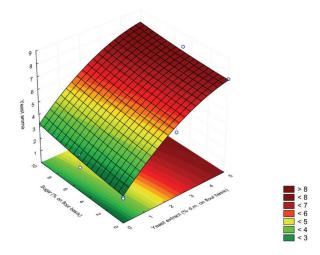


Fig. S-26b. Graphical presentation of the modelled dependence of Yeast aroma on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

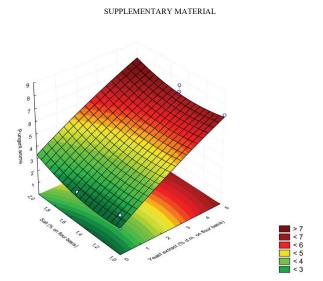


Fig. S=27a. Graphical presentation of the modelled dependence of the pungent aroma on yeast extract and salt addition, at a level of sugar addition of 5 %.

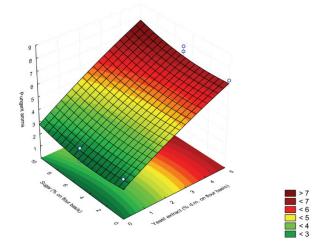


Fig. S-27b. Graphical presentation of the modelled dependence of the pungent aroma on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

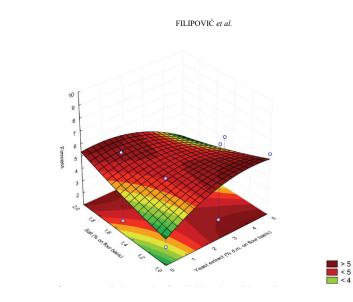


Fig. S-28a. Graphical presentation of the modelled dependence of Firmness on yeast extract and salt addition, at a level of sugar addition of 5 %.

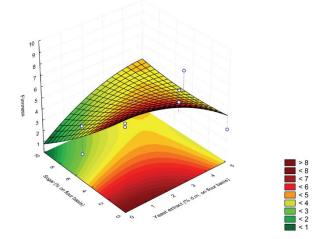


Fig. S-28b. Graphical presentation of the modelled dependence of Firmness on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

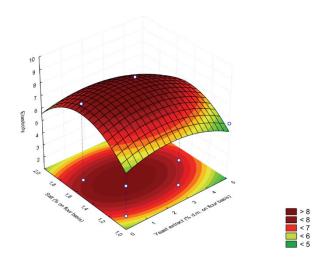


Fig. S-29a. Graphical presentation of the modelled dependence of Elasticity on yeast extract and salt addition, at a level of sugar addition of 5 %.

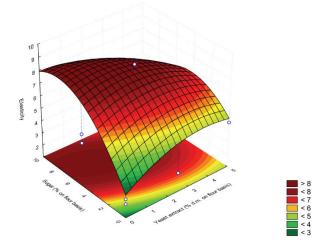


Fig. S-29b. Graphical presentation of the modelled dependence of Elasticity on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

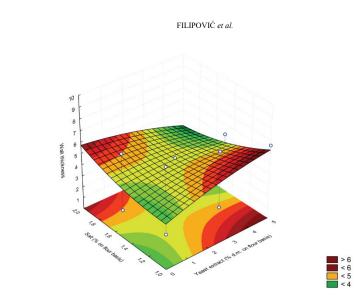


Fig. S-30a. Graphical presentation of the modelled dependence of Wall thickness on yeast extract and salt addition, at a level of sugar addition of 5 %.

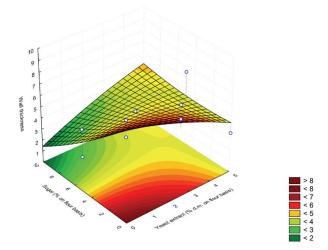


Fig. S-30b. Graphical presentation of the modelled dependence of Wall thickness on yeast extract and sugar addition, at a level of salt addition of 1.5 %.

SUPPLEMENTARY MATERIAL

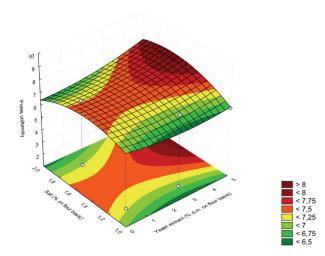


Fig. S-31a. Graphical presentation of the modelled dependence of Pores uniformity on yeast extract and salt addition, at a level of sugar addition of 5%.

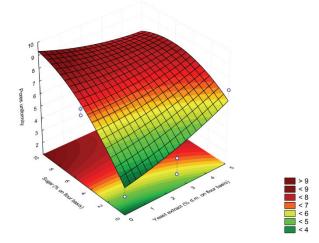


Fig. S-31b. Graphical presentation of the modelled dependence of Pores uniformity on yeast extract and sugar addition, at a level of salt addition of 1.5 %.