SUPPLEMENTARY MATERIAL TO
Corrosion protection of AZ91D magnesium alloy by a duplex coating

ANA D. FORERO LÓPEZ, ANA P. LOPERENA, IVANA L. LEHR,*
LORENA I. BRUGNONI and SILVANA B. SAIDMAN

Chemical Engineering Department, Institute of Electrochemical and Corrosion Engineering,
National University of the South, CONICET, Bahía Blanca, Argentina

Department of Biology, Biochemistry and Pharmacy, Institute of Biological and Biomedical Sciences,
National University of the South, CONICET, Bahía Blanca, Argentina

Fig. S-1. Potentiodynamic polarization curves in Ringer solution for: a - uncoated AZ91D alloy and b - alloy covered with: PPy0.25; c - PPy0.50. The scan rate was 0.001 V s⁻¹.

* Corresponding author. E-mail: ilehr@uns.edu.ar

S497
Fig. S-2. SEM image of the RMo–PPy$_{0.25}$ film synthesized onto AZ91D alloy.

Fig. S-3. Potentiodynamic polarization curves in Ringer solution for the AZ91D alloy covered with: a - PPY$_{0.25}$; b - RMo–PPY$_{0.25}$ and c - RMo–PPY$_{0.25}$–Ag. The scan rate was 0.001 V s$^{-1}$.

Available online at www.shd.org.rs/JSCS/
Fig. S-4. Time dependence of the OCP in Ringer solution for: a - uncoated alloy and b - the alloy covered with: PPY$_{0.25}$; c - RMo–PPY$_{0.25}$; d - RMo–PPY$_{0.25}$–Ag.

Fig. S-5. Equivalent circuit used for fitting the experimental EIS data for: A - uncoated alloy and B - RMo–PPY$_{0.25}$-covered AZ91D alloy.
Fig. S-6. SEM images of the RMo–PPy_{0.25}-covered AZ91D Mg alloy immersed in 0.05 M AgNO₃ solution for 4 h under open circuit conditions.