

J. Serb. Chem. Soc. 85 (12) S550–S558 (2020)

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Understanding bioplastic materials – Current state and trends

SANJA JEREMIC¹, JELENA MILOVANOVIC¹, MARIJA MOJICEVIC², SANJA SKARO BOGOJEVIC¹ and JASMINA NIKODINOVIC-RUNIC^{1*}

¹Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia and ²Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland

J. Serb. Chem. Soc. 85 (12) (2020) 1507-1538

Brand name	Supplier	Material	Application	Description	Patent No
Ecovio®	BASF SE,	film	versatile	Ecoflex®(fossil based)	
	Germany			+ PLA	
PLA-HI-GF10	Clariant,	filament	3D printing	glass fiber reinforced	
	Switzerland			PLA	
PLA 3D				NatureWorks Ingeo [™]	
				Biopolymer 3D850	
				with Clariant	
				Hostanox® P-	
				EPQ [®] and	
				Hostavin® ARO 8	
	Danimer				
	Scientific,			custom made	
	US			copolymers with PLA	
	(formerly				
	known as				
	Meredian				
	Holdings				
	Group Inc.				
	and MHG)				
RESOMER®	Evonik,	pellets,	medical	PLA/PCL, PLA/PEG,	
(product	Germany	filaments	devices	PLA composites	
range)	-			-	

TABLE S-I. Global PLA producers

* Corresponding author. E-mail: jasmina.nikodinovic@imgge.bg.ac.rs

S550

Available on line at www.shd.org.rs/JSCS/

Futerro PLA	Futerro, Belgium	pellets	raw material	Galactic and Total Petrochemicals join forces to create Futerro, a joint venture dedicated to the production of PLA	WO 2015/086613
Bio-Flex®	FKuR, Germany	granules	raw material	PLA containing copolyester and additives	
Recycled PLA	Loopla (Galactic), Belgium	granules	raw material		WO2010118954A 1 WO2010118955A
ECOLOJU®	Mitsubishi Chemical, Japan	film, sheet	versatile		I
BIOCRYL RAPIDE™ Ingeo (product range)	Mitek Sports Medicine, US NatureWorks, US	resin, fiber- grade resin, monofila	medical implants raw material	PLA/PLGA plus β-TCP	US5247059A US5142023A
EarthFirst™ CornLeaf	PACO Label, US Radici Group, Italy	fibres,	labels, packaging versatile	Based on NatureWorks® PLA Based on Ingeo PLA	
Sulzer PLA	Sulzer Ltd, Switzerland	ns pellets	raw material	Production technology was jointly developed with Purac	
EcoPlan	SK Chemicals, South Korea	film	packaging film, fiber for sanitary products		10501604
Styrex BioFoam	Synbra Technology BV, Netherlands	foam	technical products, packaging solutions		EP3053947A1
Luminy PLA (high heat, low heat, standard, PDLA)	Total Corbion, Netherlands	resin	raw material	Total Corbion PLA is a joint venture between Total (FR) and Corbion (NL). Corbion was previously called Purac.	

Available on line at www.shd.org.rs/JSCS/

```
JEREMIC et al.
```

PLAneo® Thyssenkrupp pellets raw material (different AG, Germany MW)

Brand name	PHA type	Supplier	Application	Production t/year
VersaMer™ PHA I	PHOHHx, PHNHHp, PHNHHpHN:HUD:	PolyFerm Canada Inc.	Raw materials (pellets, latex)	
Ecoman		Shenzhen Ecomann Biotechnology Co., Ltd.	Bags, printer filaments	• 75000
РНВН™Х131А РНВН™ Х331N РНВН™ Х151А	PHBV copolymers PHBHHx	Kaneka (Japan)	Food packaging materials, agricultural and civil engineering materials, marine materials, etc.	5000
Minerv -SB [™] Minerv -SC [™]	РНА	Bio-On, (Italy)	Automotive, beverages, electronics, foodpack, fibers, pharma	10000
Natureplast		Natureplast (France)	Agricultural applications; consumer applications	
AirCarbonTM	PHA (unclear)	Newlight Technologies (USA)	Electronics, construction, apparel etc.	
Nodax™	(РНВ-НН)	Danimer scientific (USA)	Detergent bottles, coffee containers, paper cups and plates, plastic bags, foam containers, baby wipes.	

TABLE S-II. Global PHA producer

Available on line at www.shd.org.rs/JSCS/

Biocycle	PHBV	PHB Industrial, (Brazil)	Veterinary applications, agricultural, packaging	10000
Biomer	PHBV,	Biomer Biotechnol.		
	РНВН,	(Germany)		
	PHBO			
Enmat	PHBV	TianAn Biopolymer, (China)		2000
	PHBV/PLA			
Biogreen	PHB	Mitsubishi Gas Chemical Company, Inc.	Film, bags	
TephaFLEX	P4HB	Tepha (USA)	Medical materials	
Mirel,	P3HB	Metabolix, (USA)	Agricultural	50000
Mvera		Or Yield10 Bioscience	applications; caps; closures	
	Mcl-PHA	MHG Bio, (USA)		20
Hydal		Bochemie (Czech)		
SogreenTM	Etyl 3-HB	Tianijin GreenBio (China)		10000
	P(3HB,4HB)			
Solon		RWDC Industries (Singapore)		4000
		Mango materials (USA)		
		Full Cycle Bioplastics (USA)		3000
		Bluepha Co. Ltd. (China)		

TABLE S-III. Patents related to PHA

Patent	Year	Patent No
Method for producing polyhydroxyalkanoic acid, and microbes	2020	US2020109423A1
Method for producing polyhydroxyalkanoates (pha) from	2019	US20190360008A1
organic waste		
Transformant that produces PHA copolymer containing 3HH	2018	WO2018021046A1
unit, and method for producing PHA		
Process for extraction of bioplastic and production of monomers	2016	WO2016085396A1
from the bioplastic		
Method for decomposing polyhydroxyalkanoic acid, and	2015	WO2015122190A1
microorganism preparation		
Pseudomonas mutant strain and application of Pseudomonas	2015	CN104328062A
mutant strain to production of (R)-3-hydroxybutyrate		
Method of producing polyhydroxyalkanoates (PHA) from oil	2014	WO2014032633A1
substrate		
Green process for producing polyhydroxyalkanoates and	2012	WO2012149162
chemicals using a renewable feedstock		
Process for producing microbial copolyesters from sucrose-	2011	EP2780461A1
containing feedstocks		
Copolyester degradation bacterial strain of beta-hydroxy-	2008	CN101245365A
butanoic acid and beta-hydroxyl radical valeric acid, and		
breeding method		

JEREMIC et al.

TABLE S-IV. Patents related to starch and cellulose

Patent	Year	Patent No
Starch		
Addition of biodegradability lending additives to plastic	2019	WO2018006061A1
materials		
Biodegradable polymer composition and method of producing	2019	WO2020037394A1
the same		
Process for preparing biological substrate-based degradable	2018	WO2020034958A1
packaging material		
Biodegradable plastic	2018	WO2019155398A1
Carbohyrate-based polymeric materials	2017	WO2018125897A1
Biodegradable polymer-based biocomposites with tailored	2016	WO2016138593A1
properties		
Process for producing starch from microalgae	2016	WO2017130106A1
Partial shell for packaging a food product	2016	WO2018041779A1
Coated particles and methods of making and using the same	2016	WO2017091463A1
Starch/thermoplastic polyurethane (TPU) composite material	2012	CN102585485B
Cellulose		
Method for manufacturing crystal nano-cellulose	2019	WO2019221535A1
Method of producing three dimensional autologous fat graft	2019	WO2020035734A1
Process for producing a nanocelullosic material comprising at	2018	WO2020014762A1
least two stages of defibrillation		
Device and method for producing nanocellulose	2018	WO2020015884A1
Nanostructured polymer-based compositions	2018	WO2018187782A1
Nanocellulose-reinforced corrugated medium	2017	WO2017192476A1
Cellulose derivative and use thereof	2016	WO2017061190A1
Method for manufacturing a cellulose product	2016	WO2017160218A1
Multi-phase bacterially-synthesized-nanocellulose biomaterials	2016	WO2016113400A1
Modified bacterial nanocellulose and its uses in chip cards and	2016	WO2016174104A1
medicine		
Methods of producing bacterial nanocellulose from cassava	2014	WO2016029432A1
bagasse		

TABLE S-V. Global PBS produc	ers
------------------------------	-----

Brand name	Supplier	Application	Description	Production t/year	Patent no.
FD92 (PM/PB)	Mitsubishi Chemical Performance Polymers (MCPP) Japan / PTT MCC Biochem	Barrier packaging	It is derived from natural resources such as sugarcane, cassava and corn. It is compostable at open-air landfill site in an ambient condition (30°C), without requiring a specialized composting facility.	3000	US 20180058010A1

FZ71		Coffee	It is derived from	3000	US
(PM/PB)		capsule	natural resources	5000	20180058010A1
(111112)		cutlerv	such as sugarcane.		201000000010111
			cassava and corn. It		
			is compostable at		
			open-air landfill site		
			in an ambient		
			condition (30°C),		
			without requiring a		
			specialized		
			composting facility.		
FD72		Injection	It is soft and flexible	3000	US
(PM/PB)		molding	semi-crystalline		20140021574A1
		articles for	polyester with		
		general	excellent properties		
		purpose			
FZ79AC		Paper	It is soft and flexible	3000	
		coating	semi-crystalline		
			polyester with		
5504		~ ~ ~	excellent properties	2000	110
FZ91		Coffee	It is compostable at	3000	US
(PM/PB)		capsule	open-air landfill site		20180058010A1
		cutlery	in an ambient		
			condition $(30^{\circ}C)$,		
			without requiring a		
			specialized		
			It is derived from		
			natural resources and		
			It decomposes into		
			hiomass carbon		
			dioxide & water		
FZ78TM		Synthetic	BioPBS FZ78TM -	3000	
		fiber	Natural Colored		
			Resin (max thickness		
			74 microns)		
Bionolle		Trash bag,	Stable under	5000	US20030015826A1
3001 MD	SHOWA	plant pot,	ordinary conditions it		
	DENKO Japan	filament,	becomes		
		yarn, net,	biodegradable in the		
		bottle,	presence of		
		gloves,	microorganism, e.g.		
		container,	compost, wet soil,		
		laminated	tresh water, seawater		
		paper, tray,	and activated sludge.		
		comb, trame	3		
		of fan and			
		peg			

Available on line at www.shd.org.rs/JSCS/

S556

JEREMIC et al.

Bionolle	SHOWA	It is an aliphatic	5000	US20020094444A1
1903 MD	DENKO Japan	polyester resin that		
		has the versatility of		
		common plastics. It		
		becomes		
		biodegradable in the		
		presence of		
		microorganism, e.g.		
		compost, wet soil,		
		Iresh water, seawater		
Dianalla		and activated sludge.	5000	110706510000
Bionolle		It is an aliphatic	5000	US/200188B2
3020 MD		polyester resin that		
		has the versatility of		
		common plastics. It		
		biodogradable in the		
		biodegradable in the		
		presence or		
		microorganism, e.g.		
		freeh weter geowater		
		and activated sludge		
Bionolla		Stable under	5000	WO2010151708A2
1001 MD		ordinary conditions it	5000	W02010131730A2
		becomes		
		biodegradable in the		
		presence of		
		microorganism e g		
		compost wet soil		
		fresh water seawater		
		and activated sludge.		
Bionolle		Stable under	5000	WO2016105217A1
1020 MD		ordinary conditions it		
		becomes		
		biodegradable in the		
		presence of		
		microorganism, e.g.		
		compost, wet soil,		
		fresh water, seawater		
		and activated sludge.		

Available on line at www.shd.org.rs/JSCS/

Eco-	Minima	Injection	Eco Solution GP300		CN105152255A
Solutions	Technology	process	is a PLA (polyactide)		
GP330-1	Co., Lia.		(Daly Dutyland		
	Talwall		(Poly Bulylelle Sussingto) and is		
			succinate) and is		
			biodogradable regin		
			and most ASTM		
			and meet ASTM D6400 EN12422		
Г	-		D0400, EN13432		CN105150055A
Eco-			Eco Solution GP300		CN105152255A
Solutions			is a PLA (polyactide)		
GP330-S			based alloy with PBS		
			(Poly Butylene		
			Succinate) and is		
			certified as a		
			biodegradable resin		
			and meet ASTM		
F			D6400, EN13432		0.11051500551
Eco-			Eco Solution GP300		CN105152255A
Solutions			is a PLA (polyactide)		
GP335C			based alloy with PBS		
			(Poly Butylene		
			Succinate) and is		
			certified as a		
			biodegradable resin		
			and meet ASIM		
		M (°1	D6400, EN13432	2500	W0001(100000 A 1
EnPol	Ire Chemical	Monofilame	G4560 is	3500	WO2016189228A1
G4560	Limited South	nt,	biodegradable,		
	Corea	multimamen	aliphatic polyester		
		t	based on the		
			monomers, 1,4-		
			butanedioi and		
Die Flerr®	EV.D Varantata	Elet also at	SUCCINIC ACID.	2000	NT A
S 5620	GmbU and	ortrusion	blonds	3000	IN.A.
5 3030	Erouphofor	extrusion	biends		
		and injection			
	Germany	process			
	Ocimany				

Available on line at www.shd.org.rs/JSCS/

JEREMIC et al.

Brand name	Supplier	Application	Description	Production t/year
HDPE	Braskem	Thermoplastic	Exhibits high stiffness, low gels	200000
	Brasil	s, bags, boxes	content, excellent appearance of films,	
LDPE	(producing		good mechanical and optical properties.	
LLDPE	45 different			
- 1	materials)			• • • • • •
Terralene	FKuR	Buildings,	Is polyethylene reinforced with 30%	20000
	Germany	constructions,	glass fiber, exhibits high stiffness.	
	(producing / diff. mat.)	termoplastics		
Cardia	Cardia	Bottles,	Homogenous blend of thermoplastic	
Biohybrid	Bioplastics	standard,	starch (TPS) with polyethylene (PE). It	
BL-F, H-F	Australia	bags,	is compatibilized to offer a high level of	
		shopping,	mechanical strength	
		blow molding		20000
Y parex®	The	Packaging,	Possesses good melt flow index,	30000-
RENEW 0H	Compound	extrusion	melting temperature and the level of	60000
	Company Natharlanda		functional groups	
	(2 diff mat)			
TRUCIRCI	(5 diff. filat,)	Packaging	Is a 100% recyclable linear low density	
FTM	Saudi Arabia	food	nolvethylene (LLDPF)	
MCGB	MCG	Pines	Its typical size is 0.0156 inch. The	
Duramaze TM	BioComposit	1 ipes	product should be stored in a cool dry	
CC HDPE	es		and sanitary area to achieve maximum	
ee min i	Netherlands		stability.	
ParsaBio™	Parsa	Injection	Linear low density polyethylene	18000
6010	Polymer	molding,	(LLDPE) grade by Parsa Polymer	
	Sharif Iran	thermoplastics	Sharif.	
Solaplast	Algix USA	Ellectronics,	Is an ethylene vinyl acetate base resin	27000
1312		cellular	(EVA) with food-grade aquatic biomass	
		phones, bottles	and an odor adsorbent.	
Nano4elec –	Nano4	Building	Is an electrically conductive bio-based	
BioPE EC12	Greece	constructions,	polyethylene (PE) grade.	
		electrical		
		markets,		
		switches		