

J. Serb. Chem. Soc. 86 (10) S175–S185 (2021)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Synthesis and properties of new fused pyrrolo-1,10-phenanthroline type derivatives

CRISTINA M. AL-MATARNEH^{1,2*}, IRINA ROSCA¹, SERGIU SHOVA¹ and RAMONA DANAC^{2**}

¹ "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania and ²Chemistry Department, Faculty of Chemistry, "Al. I. Cuza" University of Iasi, 11 Carol I, Iasi 700506, Romania

J. Serb. Chem. Soc. 86 (10) (2021) 901–915

PHYSICAL AND SPECTRAL DATA FOR THE SYNTHESIZED COMPOUNDS *1-(2-(4-fluorophenyl)-2-oxoethyl)-1,10-phenanthrolin-1-ium bromide* (*3a*)

Pink powder, mp = 277-279 °C, yield: 65%. Spectral data are in accordance to the literature.⁴⁰ Obtained by general procedure, at room temperature in acetone. Pink powder, mp = 277-279 °C, yield: 65 %. IR (KBr): 3062, 3027; 2986, 2916 1687 1595, 1531, 1230 cm⁻¹. ¹H NMR (500 MHz, DMSO-d6, δ (ppm)): 9.66 (1H, dd, *J* = 6.0, 1.0 Hz, H-2), 9.61 (1H, dd, *J* = 8.5, 1.0 Hz, H-4), 8.78 (1H, dd, *J* = 8.0, 1.5 Hz, H-9), 8.63 (1H, dd, *J* = 8.5, 6.0 Hz, H-3), 8.50 (3H, m, H-7, H-5, H-6,), 8.30 (2H, m, H-2', 6'), 7.91 (1H, dd, *J* = 8.0, 4.0 Hz, H-8), 7.60 (2H, m, H-3', 5'), 7.29 (2H, as, H-11). ¹³C RMN (125 MHz, DMSO-d6, δ (ppm)): 189.4 C-12, 165.5 (d, *J*_{C, F} = 251.0 Hz, C-4'), 152.1 C-2, 148.8 C-9, 148.2 C-4, 138.4 C-10a, 138.0 C-7, 136.2 C-10b, 132.0 C-4a, 131.5 C-6a, 131.3 (d, *J*_{C, F} = 10 Hz, C-2', C-6'), 131.0 (d, *J*_{C, F} = 2.5 Hz, C-1'), 130.7 C-5, 127.0 C-6, 125.5 C-8, 124.3 C-3, 116.4 (d, *J*_{C, F} = 22.5 Hz, C-3', C-5'), 69.5 C-11. Combustion analysis for C₂₀H₁₄BrFN₂O: Calculated. C 60.47, H 3.55, N 7.05; found C 60.49, H 3.53, N 7.08.

S175

Available on line at www.shd.org.rs/JSCS/

^{****} Corresponding authors. E-mail: (*)almatarneh.cristina@icmpp.ro; (**)rdanac@uaic.ro

1-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-1,10-phenanthrolin-1-ium bromide (3b)

Obtained by general procedure, at room temperature in acetone. Pink powder, mp = 212-215 °C, yield: 80 %. IR (KBr): 2988, 2918, 1691, 1630, 1585, 1321, 1230, 1175, 1126, 1065 cm⁻¹. ¹H NMR (500 MHz, DMSO-d6, δ (ppm)): 9.65 (1H, d, *J* = 5.5 Hz, H-2), 9.62 (1H, dd, *J* = 8.5, 1.0 Hz, H-4), 9.20 (1H, dd, *J* = 4.5, 1.5 Hz, H-9), 8.80 (1H, dd, *J* = 8.5, 1.5 Hz, H-7), 8.64 (1H, dd, *J* = 8.5, 6.0 Hz, H-3), 8.51 (1H, d, *J* = 9.0 Hz, H-6), 8.49 (1H, d, *J* = 9.0 Hz, H-5), 8.40 (2H, d, *J* = 8.0 Hz, H-2', 6'), 8.13 (2H, d, *J* = 8.0 Hz, H-3', 5'), 8.00 (1H, dd, *J* = 8.5, 4.5 Hz, H-8), 7.30 (2H, bs, H-11). ¹³C RMN (125 MHz, DMSO-d6, δ (ppm)): 190.0 C-12, 152.1 C-2, 148.7 C-9, 148.3 C-4, 138.2 C-10a, 138.1 C-7, 137.6 C-1', 136.1 C-10b, 133.3 (q, *J*_{C, F} = 31.3 Hz, C-4'), 132.1 C-4a, 131.5 C-6a, 130.8 C-5, 129.1 (C-2', C-6'), 127.1 C-6, 124.9 C-3, 124.6 C-8, 123.8 (q, *J*_{C, F} = 270.0 Hz, CF₃), 126.4 (q, J_{C, F}= 3.8 Hz, C-3',C-5'), 69.6 C-11. Combustion analysis for C₂₁H₁₄BrF₃N₂O: Calculated. C 56.39, H 3.16, N 6.26; found C 56.40, H 3.14, N 6.28.

Dimethyl 11-(4-fluorobenzoyl)-10,11-dihydropyrrolo[1,2-a][1,10]phenanthroline-9,10-dicarboxylate (4a)

Crystallized from methanol-chloroform 1:1, (v/v). Red crystals, mp = 235-237 °C, yield: 30 %. IR (KBr): 3070, 2954, 2920, 1749, 1688, 1627, 1592, 1566, 1497, 1230, 1119, 1047 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 8.13 (2H, m, H-2', H-6'), 7.96 (1H, d, *J* = 4.5 Hz, H-10), 7.92 (1H, d, *J* = 7.5 Hz, H-4), 7.79 (1H, d, *J* = 8.5 Hz, H-8), 7.56 (1H, d, *J* = 5.0 Hz, H-1), 7.26 (1H, d, *J* = 7.5 Hz, H-5), 7.25 (2H, bs, H-6, H-7), 7.19 (2H, m, H-3', H-5'), 7.13 (1H, dd, *J* = 8.5; 4.5 Hz, H-9), 4.00 (1H, d, *J* = 5.0 Hz, H-2), 3.72 (3H, s, CH₃), 3.62 (3H, s, CH₃). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 189.3 C-13, 173.9 CO_{ester}, 166.1 CO_{ester}, 166.0 (d, *J*_{C,F}= 253.75 Hz, C-4'), 155.3 C-3a, 146.5 C-10, 137.6 C-7, 136.6 C-4, 135.8 C-11b, 132.0 (d, *J*_{C,F}= 8.75 Hz, C-2', C-6'), 130.1 (d,

 $J_{C,F}$ = 3.75 Hz, C-1'), 126.9 C-6, 126.1 C-7a, C-11a, 125.6 C-5a, 122.0 C-9, 121.0 C-5, 119.7 C-8, 116.2 (d, J_{C-F} = 21.25 Hz, C-3', C-5'), 88.2 C-3, 71.3 C-1, 52.9 CH₃, 50.6 CH₃, 49.6 C-2. Combustion analysis for C₂₆H₁₉FN₂O₅: Calculated. C 68.12, H 4.18. N 6.11; found C 68.15, H 4.15, N 6.14.

Dimethyl 11-(4-(trifluoromethyl)benzoyl)-10,11-dihydropyrrolo[1,2-a][1,10]phenanthroline-9,10-dicarboxylate (4b)

Crystallized from methanol-chloroform 1:1, (v/v). Red crystals, mp = 225-226 °C, yield: 55 %. IR (KBr): 3022, 2953, 1728, 1690, 1630, 1585, 1547, 1463, 1230, 1115, 1065 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 8.29 (2H, d, J = 8.0 Hz, H-2', H-6'), 8.02 (1H, d, J = 8.0 Hz, H-4), 7.97 (1H, d, J = 4.5 Hz, H-10), 7.85-7.89 (3H, overlapped signals, H-3', H-5', H-8), 7.62 (1H, d, J = 4.0 Hz, H-1), 7.44-7.48 (2H, overlapped signals, H-6, H-7), 7.37 (1H, d, J = 8.5 Hz, H-5), 7.23 (1H, dd, J = 7.5; 4.0 Hz, H-9), 4.07 (1H, d, J = 4.5 Hz, H-2), 3.79 (s, 3H, CH₃), 3.70 (s, 3H, CH₃). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 189.23 C-13, 173.7 CO_{ester}, 166.0 CO_{ester}, 155.1 C-3a, 146.5 C-10, 137.4 C-7, 136.8 C-4, 136.6 (C-1'), 135.6 C-11b, 134.8 (q, $J_{C,F}= 31.3$ Hz, C-4'), 130.5 C-7a, 129.8 (C-2', C-6'), 127.0 (C-6, C-5a), 126.0 (C-3', C-5', C-11a), 122.1 C-9, 123.76 (q, $J_{C,F}= 271.3$ Hz, CF₃), 121.1 C-5, 119.8 C-8, 88.2 C-3, 71.3 C-1, 53.0 CH₃, 50.6 CH₃, 49.5 C-2. Combustion analysis for C₂₇H₁₉F₃N₂O₅: Calculated. C 63.78, H 3.77, N 5.51; found C 63.80, H 3.76, N 5.53.

Ethyl 11-(4-fluorobenzoyl) pyrrolo[1,2-a][1,10]phenanthroline-9-carboxylate (5a)

Crystallized from methanol-chloroform 1:1, (v/v). Yellow crystals, mp = 162-164 °C, yield: 40 %. IR (KBr): 2981, 1697, 1645, 1596, 1226, 1121 cm⁻¹.

¹H-NMR (500 MHz, CDCl₃, δ(ppm)): 8.58 (1H, d, J = 9.5 Hz, H-4), 8.33 (1H, bs, H-8), 8.44 (1H, bs, H-10), 8.15 (2H, bs, H-2', H-6'), 7.94 (1H, d, J = 8.5 Hz, H-7), 7.87 (1H, d, J = 8.5 Hz, H-6), 7.72 (1H, d, J = 9.5 Hz, H-5), 7.50 (1H, m, H-9), 7.53 (1H, s, H-2), 7.21 (2H, at, J = 8.5 Hz, H-3', H-5'), 4.40 (2H, q, J = 7.0 Hz, CH₂), 1.42 (3H, t, J = 7.0 Hz, CH₃). ¹³C-RMN (125 MHz, CDCl₃, δ(ppm)): 191.4 C-13, 164.6 CO_{ester}, 165.2 (d, $J_{C,F} = 252.5$ Hz, C-4'), 157.4 C-3a, 145.9 C-10, C-11b, 137.4 C-8, 134.9 (d, $J_{C,F} = 3.75$ Hz, C-1'), 131.9 (d, $J_{C,F} = 8.75$ Hz, C-2', C-6'), 127.4 C-7, 127.9 C-7a, C-11a, 125.7 C-5, 125.1 C-5a, 125.0 C-6, 122.8 C-9, 121.0 C-4, C-2, 115.7 (d, $J_{C-F} = 21.25$ Hz, C-3', C-5'), 107.3 C-1, 104.5 C-3, 60.3 CH₂, 14.7 CH₃. Combustion analysis for C₂₅H₁₇FN₂O₃: Calculated. C 72.81, H 4.15, N 6.79; found C 72.83, H 4.12, N 6.81.

Ethyl 11-(4-(trifluoromethyl)benzoyl)pyrrolo[1,2-a][1,10]phenanthroline-9-carboxylate (5b)

Crystallized from methanol-chloroform 1:1, (v/v). Yellow powder, mp = 220-221 °C, yield: 45 %. IR (KBr): 3072, 2986, 1697, 1651, 1584, 1236, 1126 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 8.60 (1H, d, J = 9.0 Hz, H-4), 8.25-8.33 (4H, overlapped signals, H-8, H-10, H-2', H-6'), 7.93 (1H, d, J = 8.5 Hz, H-7), 7.82-7.85 (3H, overlapped signals, H-6, H-3', H-5'), 7.75 (1H, d, J = 9.0 Hz, H-5), 7.54 (1H, s, H-2), 7.43 (1H, dd, J = 7.5; 5.5 Hz, H-9), 4.40 (2H, m, CH₂), 1.42 (3H, t, J = 7.0 Hz, CH₃). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 192.9 C-13, 164.6 CO_{ester}, 157.4 C-3a, 146.1 C-10, 141.2 C-11b, 138.4 (C-1'), 136.9 C-8, 133.8 (q, $J_{C,F} = 31.3$ Hz, C-4'), 130.3 (C-2', C-6'), 128.0 C-7a, C-11a, 127.1 C-7, 125.8 C-5a, 125.7 C-5, 125.6 (q, $J_{C,F} = 2.5$ Hz, C-3', C-5'), 125.2 C-6, 124.0 (q, $J_{C,F} = 271.3$ Hz, CF₃), 122.8 C-9, 121.6 C-2, 120.6 C-4, 106.9 C-1, 104.4 C-3, 60.3 CH₂, 14.7 CH₃. Combustion analysis for C₂₆H₁₇F₃N₂O₃: Calculated. C 67.53, H 3.71, N 6.06; found: C 67.56, H 3.68, N 6.05.

11-(4-fluorobenzoyl)-10,11-dihydropyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (6a)

Crystallized from ethanol-chloroform 1:1, (v/v). Red solid, mp = 213-215 °C, yield: 40 %. IR (KBr): 3060, 2962, 2917, 2160, 1695, 1594, 1458, 1192 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 7.99 (2H, m, H-2', H-6'), 7.88 (2H, overlapped signals, H-10, H-8), 7.12-7.27 (7H, overlapped signals, H-5, H-3', H-5', H-4, H-6, H-1, H-9), 6.77 (1H, s, H-7), 3.38 (1H, t, *J* = 13.5; 11.5 Hz, H-2a), 2.85 (1H, dd, *J* = 15.0; 6.0 Hz, H-2b). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 190.2 C-13, 165.9 (d, *J*_{C,F} = 253.75 Hz, C-4'), 157.4 C-11a, 146.4 C-10, 137.1 C-3a, 136.6 C-11b, 136.4 C-8, 135.8 C-7a, 131.5 (d, *J*_{C,F} = 8.75 Hz, C-2', C-6'), 130.6 (d, *J*_{C,F} = 3.75 Hz, C-1'), 126.9 C-6, C-5, C-5a, 122.1 C-9, 120.6 C-4, 120.2 CN, 118.0 C-7, 116.3 (d, *J*_{C-F} = 21.25 Hz, C-3', C-5'), 69.4 C-3, 68.0 C-1, 33.0 C-2. Combustion analysis for C₂₃H₁₄FN₃O: Calculated. C 75.19, H 3.84, N 11.44; found C 75.18, H 3.81, N 11.46.

11-(4-(trifluoromethyl)benzoyl)-10,11-dihydropyrrolo[1,2-a][1,10]phenanthroline-9-carbonitrile (**6b**)

Crystallized from methanol-chloroform 1:1, (v/v). Red crystals, mp = 240-242 °C, yield: 40 %. IR (KBr): 2995, 2943, 2243, 2172, 1680, 1639, 1595, 1452, 1128 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 8.15 (2H, d, *J* = 7.5 Hz, H-2', H-6'), 7.99 (1H, d, *J* = 7.5 Hz, H-8), 7.85-7.88 (3H, overlapped signals, H-10, H-3', H-5'), 7.20-7.37 (5H, overlapped signals, H-5, H-4, H-6, H-1, H-9), 6.86 (1H, bs, H-7), 3.47 (1H, t, *J* = 14.0 Hz, H-2a), 2.93 (1H, dd, *J* = 14.5; 6.5 Hz, H-2b). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 190.1 C-13, 157.4 C-11a, 155.1 C-3a, 146.3 C-10, 136.8 C-8, 135.8 C-11b, 130.6 C-7a, 129.3 (C-2', C-6'), 137.4 (C-1'), 134.79 (q, *J*_{C,F} = 31.3 Hz, C-4'), 126.9 C-6, C-5, C-5a, 126.2 (C-3',

Available on line at www.shd.org.rs/JSCS/

C-5'), 123.7 (q, $J_{C,F}$ = 271.3 Hz, CF₃), 122.2 C-9, 120.9 C-4, 120.7 CN, 118.0 C-7, 67.9 C-1, 66.8 C-3, 32.9 C-2. Combustion analysis for C₂₄H₁₄F₃N₃O: Calculated. C 69.06, H 3.38, N 10.07; Found C 69.08, H 3.35, N 10.09.

11-(4-fluorobenzoyl)-8a,9-dihydropyrrolo[1,2-a][1,10]phenanthroline-9,10-dicarbonitrile (7a)

Crystallized from ethanol-chloroform 1:1, (v/v). Orange solid, mp = 238-240 °C, yield: 52 %. IR (KBr): 3062, 2978, 2925, 2225, 2175, 1691, 1596, 1460, 1153cm⁻¹. ¹H-NMR (500 MHz, CDCl₃, δ (ppm)): 8.17 (2H, m, H-2', H-6'), 8.05-8.09 (2H, overlapped signals, H-10, H-8), 7.74 (1H, d, *J* = 5.0 Hz, H-1), 7.50-7.53 (2H, overlapped signals, H-4, H-7), 7.34 (2H, t, *J* = 8.5 Hz, H-3', H-5'), 7.30 (1H, dd, *J* = 8.5; 4.5 Hz, H-9), 7.26 (1H, d, *J* = 9.5 Hz, H-5), 6.99 (1H, d, *J* = 8.5 Hz, H-6), 4.13 (1H, d, *J* = 5.0 Hz, H-2). ¹³C-RMN (125 MHz, CDCl₃, δ (ppm)): 187.2 C-13, 166.6 (d, *J*_{C,F} = 253.75 Hz, C-4'), 158.2 C-3a, 147.2 C-10, 137.8 C-7, 137.0 C-8, C-11b, 135.2 C-11a, 131.8 (d, *J*_{C,F} = 10.0 Hz, C-2', C-6'), 130.7 C-7a, 129.1 (d, *J*_{C,F} = 3.75 Hz, C-1'), 127.0 C-4, 125.9 C-5a, 122.6 C-9, 122.2 C-6, 122.1 C-5, 118.0 CN, 117.5 CN, 117.0 (d, *J*_{C-F} = 22.5 Hz, C-3', C-5'), 71.2 C-1, 63.0 C-3, 35.6 C-2. Combustion analysis for C₂₄H₁₃FN₄O: Calculated. C 73.46, H 3.34, N 14.28; found C 73.44, H 3.31, N 14.30.

11-(4-(trifluoromethyl)benzoyl)-8a,9,10,11-tetrahydropyrrolo[1,2-a][1,10]phenanthroline-9,10-dicarbonitrile (7b)

Crystallized from methanol-chloroform 1:1, (v/v). Orange solid, mp = 230-232 °C, yield: 68 %. IR (KBr): 2996, 2914, 2365, 2249, 1688, 1647, 1454, 1126 cm⁻¹. ¹H-NMR (500 MHz, DMSO-d6, δ (ppm)): 8.36 (2H, d, *J* = 8.0 Hz,

H-2', H-6'), 8.09 (1H, dd, J = 8.0; 1.5 Hz, H-8), 8.04 (2H, d, J = 8.0 Hz, H-3', H-5'), 7.53 (1H, dd, J = 4.5; 1.5 Hz, H-10), 7.28 (1H, d, J = 8.5 Hz, H-6), 7.18-7.21 (2H, overlapped signals, H-7, H-9), 6.72-6.77 (2H, overlapped signals, H-5, H-1), 5.88 (1H, dd, J = 10.0; 2.0 Hz, H-4), 5.40 (1H, dd, J = 4.5; 1.5 Hz, H-3a), 4.33 (1H, dd, J = 7.0; 5.0 Hz, H-3), 4.08 (1H, t, J = 7.0 Hz, H-2). ¹³C-RMN (125 MHz, DMSO-d6, δ (ppm)): 192.6 C-13, 145.0 C-10, 138.3 C-1', 137.3 C-11b, 136.5 C-8, 136.3 C-11a, 132.6 (q, $J_{C,F}= 32.5$ Hz, C-4'), 129.8 (C-2', C-6'), 129.5 C-7a, 128.3 C-5, 126.8 C-6, 126.0 (d, $J_{C-F}= 3.8$ Hz, C-3', C-5'), 123.5 (q, $J_{C,F}= 271.3$ Hz, CF₃), 121.1 C-7, 119.9 C-4, 118.7 C-5a, 117.8 CN, 117.3 CN, 116.8 C-9, 65.7 C-1, 63.6 C-3a, 39.5 C-3, 32.9 C-2. Combustion analysis for C₂₅H₁₅F₃N₄O: Calculated. C 67.57, H 3.40, N 12.61; found C 67.59, H 3.38, N 12.62.

TABLE S-I. Crystallographic data and refinement details

Compound	4b (4719)	6a (4665)	6b (4819)	7b (4833)
Empirical formula	C ₂₇ H ₁₉ F ₃ N ₂ O ₅	C ₂₃ H ₁₄ FN ₃ O	C ₂₄ H ₁₄ F ₃ N ₃ O	C ₂₅ H ₁₅ F ₃ N ₄ O
Formula weight	508.44	367.37	417.38	444.41
Temperature/K	200	293	200	140
Crystal system	triclinic	monoclinic	triclinic	monoclinic
Space group	<i>P</i> -1	C2/c	<i>P</i> -1	$P2_{1}/c$
<i>a</i> / Å	7.5236(5)	26.468(2)	5.4429(5)	9.2761(4)
<i>b</i> / Å	9.5486(7)	6.2708(4)	9.7038(8)	11.1990(4)
<i>c</i> / Å	17.3690(12)	22.8898(19)	18.6668(14)	20.0050(9)
α / °	77.052(6)	90	75.239(7)	90
β / \circ	87.591(6)	113.351(11)	82.490(7)	91.083(4)
γ / °	70.374(6)	90	80.305(7)	90
Volume, Å ³	1144.66(15)	3488.0(5)	935.77(14)	2077.81(15)
Z	2	8	2	4
$\rho_{calc}g / cm^3$	1.475	1.399	1.481	1.421
μ / mm ⁻¹	0.119	0.095	0.113	0.108
Crystal size, mm ³	0.3×0.15 0.15	0.15×0.10×0.10	0.3×0.15×0.15	0.30×0.25×0.20
$2\theta/\circ$	4.646 to 50.046	3.352 to 57.404	4.384 to 50.052	4.072 to 50.038
Reflections collected	9201	9862	8106	11269
Independent reflections	4009	3942	3306	3668
	$[R_{int} = 0.0361]$	$[R_{int} = 0.0735]$	$[R_{int} = 0.0311]$	$[R_{int} = 0.0409]$
Data/restraints/parameters	4009/0/336	3942/0/253	3306/81/277	3668/70/299
R_1^{a}	0.0667	0.0671	0.0841	0.050
R_2^{b}	0.1561	0.1827	0.2286	0.2300
GOF ^c	1.091	0.994	1.050	1.055
Largest diff. peak/hole, e Å-3	0.28/-0.29	0.17/-0.23	0.82/-0.79	0.50/-0.48

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma|F_{o}|. {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})^{2}]\}^{1/2}. {}^{c}\text{GOF} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)\}^{1/2}, where n is the number of reflections and p is the total number of parameters refined.$

Available on line at www.shd.org.rs/JSCS/

Available on line at www.shd.org.rs/JSCS/

Available on line at www.shd.org.rs/JSCS/

Fig. S-7. ¹H NMR spectrum of compound **7a**.