Assessment of density functional approximations for calculation of exchange coupling constants in thiocyanato and cyanato double bridged binuclear Ni(II) complexes
Main Article Content
Abstract
In the present work, we examine the magnetic properties of 8 "end-to-end" thiocyanato, and 3 "end-to-end" cyanato double bridged Ni(II) binuclear complexes. Thiocyanato complexes are weakly ferromagnetic. Cyanato bridged complexes exhibit weak antiferromagnetic coupling. Therefore, it is a challenge for computational chemistry to calculate the exchange coupling constant in these systems accurately. 17 different density functional approximations with different flavours are used to find the method of choice to study magnetic properties in binuclear Ni(II) complexes within the broken-symmetry approach. It is found that M06-2X and PWPB95 performed the best compared to the experimental values for the entire set of examined complexes. Furthermore, the magneto-structural correlation rationalizes the results.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
G. Li, D. Zhu, X. Wang, Z. Su, M. R. Bryce, Chem. Soc. Rev. 49 (2020) 765 (https://doi.org/10.1039/c8cs00660a)
D. M. Zink, M. Bächle, T. Baumann, M. Nieger, M. Kühn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Bräse, Inorg. Chem. 52 (2013) 2292 (https://doi.org/10.1021/ic300979c)
J. He, M. Zeng, H. Cheng, Z. Chen, F. Liang, Zeitschrift Anorg. Allg. Chem. 639 (2013) 1834 (https://doi.org/10.1002/zaac.201300153)
N. Xiong, G. Zhang, X. Sun, R. Zeng, Chinese J. Chem. 38 (2020) 185 (https://doi.org/10.1002/cjoc.201900371)
M. Jarenmark, H. Carlsson, E. Nordlander, Comptes Rendus Chim. 10 (2007) 433 (https://doi.org/10.1016/j.crci.2007.02.015)
D. Venegas-Yazigi, D. Aravena, E. Spodine, E. Ruiz, S. Alvarez, Coord. Chem. Rev. 254 (2010) 2086 (https://doi.org/10.1016/j.ccr.2010.04.003)
P. Ghorai, P. Brandão, S. Benmansour, C. J. G. García, A. Saha, Polyhedron 188 (2020) 114708 (https://doi.org/10.1016/j.poly.2020.114708)
A. L. Gavrilova, C. J. Qin, R. D. Sommer, A. L. Rheingold, B. Bosnich, J. Am. Chem. Soc. 124 (2002) 1714 (https://doi.org/10.1021/ja012386z)
C. Incarvito, A. L. Rheingold, C. J. Qin, A. L. Gavrilova, B. Bosnich, Inorg. Chem. 40 (2001) 1386 (https://doi.org/10.1021/ic0012773)
K. Shanmuga Bharathi, S. Sreedaran, A. Kalilur Rahiman, V. Narayanan, Spectrochim. Acta, A 105 (2013) 245 (https://doi.org/10.1016/j.saa.2012.12.031)
D. Ghosh, S. Mukhopadhyay, S. Samanta, K.-Y. Choi, A. Endo, M. Chaudhury, Inorg. Chem. 42 (2003) 7189 (https://doi.org/10.1021/ic034314)
J. Burmeister, Coord. Chem. Rev. 105 (1990) 77 (https://doi.org/10.1016/0010-8545(90)80019-P)
T. S. Mahapatra, S. Chaudhury, S. Dasgupta, V. Bertolasi, D. Ray, New J. Chem. 40 (2016) 2268 (https://doi.org/10.1039/c5nj02410b)
P. Bhowmik, S. Chattopadhyay, M. G. B. Drew, C. Diaz, A. Ghosh, Polyhedron 29 (2010) 2637 (https://doi.org/10.1016/j.poly.2010.06.014)
T. Mallah, M. L. Boillot, O. Kahn, J. Gouteron, S. Jeannin, Y. Jeannin, Inorg. Chem. 25 (1986) 3058 (https://doi.org/10.1021/ic00237a027)
O. Kahn, T. Mallah, J. Gouteron, S. Jeannin, Y. Jeannin, J. Chem. Soc. Dalt. Trans. (1989) 1117 (https://doi.org/10.1039/DT9890001117)
J. Carranza, J. Sletten, F. Lloret, M. Julve, J. Mol. Struct. 890 (2008) 31 (https://doi.org/10.1016/j.molstruc.2007.11.034)
A. E. Mauro, S. I. Klein, J. S. Saldaña, C. A. De Simone, J. Zukerman-Schpector, E. E. Castellano, Polyhedron 9 (1990) 2937 (https://doi.org/10.1016/S0277-5387(00)84204-7)
S. Youngme, J. Phatchimkun, U. Suksangpanya, C. Pakawatchai, G. A. Van Albada, J. Reedijk, Inorg. Chem. Commun. 8 (2005) 882 (https://doi.org/10.1016/j.inoche.2005.06.024)
C. Diaz, J. Ribas, M. Salah El Fallah, X. Solans, M. Font-Bardía, Inorg. Chim. Acta 312 (2001) 1 (https://doi.org/10.1016/S0020-1693(00)00281-4)
T. Rojo, R. Cortés, L. Lezama, M. I. Arriortua, K. Urtiaga, G. Villeneuve, J. Chem. Soc. Dalt. Trans. (1991) 1779 (https://doi.org/10.1039/DT9910001779)
D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2056 (https://doi.org/10.1021/ic50139a003)
D. M. Duggan, D. N. Hendrickson, Inorg. Chem. 13 (1974) 2929 (https://doi.org/10.1021/ic50142a031)
W. Koch, M. C. Holthausen, A Chemists Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim, 2001 (https://doi.org/10.1002/3527600043)
R. G. Parr, Density Functional Theory of Atoms and Molecules, in Horizons Quantum Chem., Springer, Amsterdam, 1980, pp. 5–15 (https://doi.org/10.1007/978-94-009-9027-2_2)
O. Kahn, Molecular magnetism, VCH‐Verlag, Weinheim, 1993 (ISBN 3‐527‐89566‐3)
L. Noodleman, J. Chem. Phys. 74 (1981) 5737 (https://doi.org/10.1063/1.440939)
L. Noodleman, E. R. Davidson, Chem. Phys. 109 (1986) 131 (https://doi.org/10.1016/0301-0104(86)80192-6)
F. Neese, Coord. Chem. Rev. 253 (2009) 526 (https://doi.org/10.1016/j.ccr.2008.05.014)
A. Bencini, F. Totti, J. Chem. Theory Comput. 5 (2009) 144 (https://doi.org/10.1021/ct800361x)
G. David, N. Guihéry, N. Ferré, J. Chem. Theory Comput. 13 (2017) 6253 (https://doi.org/10.1021/acs.jctc.7b00976)
S. Ninova, V. Lanzilotto, L. Malavolti, L. Rigamonti, B. Cortigiani, M. Mannini, F. Totti, R. Sessoli, J. Mater. Chem., C 2 (2014) 9599 (https://doi.org/10.1039/c4tc01647e)
J. E. Peralta, J. I. Melo, J. Chem. Theory Comput. 6 (2010) 1894 (https://doi.org/10.1021/ct100104v)
J. J. Phillips, J. E. Peralta, J. Chem. Phys. 138 (2013) 174115 (https://doi.org/10.1063/1.4802776)
N. A. G. Bandeira, B. Le Guennic, J. Phys. Chem., A 116 (2012) 3465 (https://doi.org/10.1021/jp300618v)
T. Keškić, Z. Jagličić, A. Pevec, B. Čobeljić, D. Radanović, M. Gruden, I. Turel, K. Anđelković, I. Brčeski, M. Zlatar, Polyhedron 191 (2020) 114802 (https://doi.org/10.1016/j.poly.2020.114802)
S. Grimme, J. Chem. Phys. 124 (2006) 034108 (https://doi.org/10.1063/1.2148954)
L. Goerigk, S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (2014) 576 (https://doi.org/10.1002/wcms.1193)
D. A. Pantazis, Inorganics 7 (2019) 57 (https://doi.org/10.3390/inorganics7050057)
F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 73 (https://doi.org/10.1002/wcms.81)
F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018) e1327 (https://doi.org/10.1002/wcms.1327)
F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297 (https://doi.org/10.1039/b508541a)
D. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 4 (2008) 908 (https://doi.org/10.1021/ct800047t)
C. van Wüllen, J. Chem. Phys. 109 (1998) 392 (https://doi.org/10.1063/1.476576)
D. A. Pantazis, F. Neese, J. Chem. Theory Comput. 5 (2009) 2229 (https://doi.org/10.1021/ct900090f)
F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057 (https://doi.org/10.1039/b515623h)
F. Neese, J. Chem. Phys. 115 (2001) 11080 (https://doi.org/10.1063/1.1419058)
F. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 356 (2009) 98 (https://doi.org/10.1016/j.chemphys.2008.10.036)
A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc. 117 (2007) 587 (https://doi.org/10.1007/s00214-007-0250-5)
A. D. Becke, Phys. Rev., A 38 (1988) 3098 (https://doi.org/10.1103/PhysRevA.38.3098)
J. P. Perdew, Phys. Rev., B 33 (1986) 8822 (https://doi.org/10.1103/PhysRevB.33.8822)
J. P. Perdew, Phys. Rev., B 34 (1986) 7406 (https://doi.org/10.1103/PhysRevB.34.7406)
C. Lee, W. Yang, R. G. Parr, Phys. Rev., B 37 (1988) 785 (https://doi.org/10.1103/PhysRevB.37.785)
B. G. Johnson, P. M. W. Gill, J. A. Pople, J. Chem. Phys. 98 (1993) 5612 (https://doi.org/10.1063/1.464906)
T. V. Russo, R. L. Martin, P. J. Hay, J. Chem. Phys. 101 (1994) 7729 (https://doi.org/10.1063/1.468265)
N. C. Handy, A. J. Cohen, Mol. Phys. 99 (2001) 403 (https://doi.org/10.1080/00268970010018431)
M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys. 102 (2004) 2467 (https://doi.org/10.1080/0026897042000275017)
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 120 (2008) 215 (https://doi.org/10.1007/s00214-007-0310-x)
Y. Zhao, D. G. Truhlar, J. Chem. Phys. 125 (2006) 194101 (https://doi.org/10.1063/1.2370993)
V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys. 119 (2003) 12129 (https://doi.org/10.1063/1.1626543)
J. Tao, J. Perdew, V. Staroverov, G. Scuseria, Phys. Rev. Lett. 91 (2003) 146401 (https://doi.org/10.1103/PhysRevLett.91.146401)
A. D. Becke, J. Chem. Phys. 98 (1993) 5648 (https://doi.org/10.1063/1.464913)
M. Reiher, O. Salomon, B. Artur Hess, Theor. Chem. Accounts Theory, Comput. Model. (Theor. Chim. Acta) 107 (2001) 48 (https://doi.org/10.1007/s00214-001-0300-3)
L. Goerigk, S. Grimme, J. Chem. Theory Comput. 7 (2010) 291 (https://doi.org/10.1021/ct100466k)
H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 115 (2001) 3540 (https://doi.org/10.1063/1.1383587)
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, J. Chem. Phys. 120 (2004) 8425 (https://doi.org/10.1063/1.1688752)
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 393 (2004) 51 (https://doi.org/10.1016/j.cplett.2004.06.011)
J. Da Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106 (https://doi.org/10.1063/1.2834918)
A. E. Shvelashvili, M. A. Porai-Koshits, A. S. Antsyshkina, J. Struct. Chem. 10 (1969) 552 (https://doi.org/10.1007/BF00743627)
H. D. Bian, W. Gu, Q. Yu, S. P. Yan, D. Z. Liao, Z. H. Jiang, P. Cheng, Polyhedron 24 (2005) 2002 (https://doi.org/10.1016/j.poly.2005.06.011)
T. Kumar Maji, G. Mostafa, J. M. Clemente-Juan, J. Ribas, F. Lloret, K. Okamoto, N. R. Chaudhuri, Eur. J. Inorg. Chem. 2003 (2003) 1005 (https://doi.org/10.1002/ejic.200390123)
M. Monfort, J. Ribas, X. Solans, Inorg. Chem. 33 (1994) 4271 (https://doi.org/10.1021/ic00097a013)
F. A. Mautner, M. Scherzer, C. Berger, R. C. Fischer, R. Vicente, S. S. Massoud, Polyhedron 85 (2015) 20 (https://doi.org/10.1016/j.poly.2014.08.031)
A. Escuer, R. Vicente, M. S. El Fallah, X. Solans, M. Font-Bardía, J. Chem. Soc., Dalton Trans. (1996) 1013 (https://doi.org/10.1039/DT9960001013)
Z. Mahendrasinh, S. Ankita, S. B. Kumar, A. Escuer, E. Suresh, Inorg. Chim. Acta 375 (2011) 333 (https://doi.org/10.1016/j.ica.2011.05.027)
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104 (https://doi.org/10.1063/1.3382344)
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32 (2011) 1456 (https://doi.org/10.1002/jcc.21759)
T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett. 319 (2000) 223 (https://doi.org/10.1016/S0009-2614(00)00166-4)
A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, A. P. Ginsberg, R. L. Martin, R. W. Brookes, R. C. Sherwood, Inorg. Chem. 11 (1972) 2884 (https://doi.org/10.1021/ic50118a006)
C. Adhikary, S. Koner, Coord. Chem. Rev. 254 (2010) 2933 (https://doi.org/10.1016/j.ccr.2010.06.001)
M. Swart, M. Gruden, Acc. Chem. Res. 49 (2016) 2690 (https://doi.org/10.1021/acs.accounts.6b00271)
Y. Zhang, W. Yang, J. Chem. Phys. 109 (1998) 2604 (https://doi.org/10.1063/1.476859)
M. Parthey, M. Kaupp, Chem. Soc. Rev. 43 (2014) 5067 (https://doi.org/10.1039/C3CS60481K).