Synthesis, spectroscopic characterization, DFT, oxygen binding and antioxidant activity of Fe(III), Co(II) and Ni(II) complexes with a tetradentate ONNO donor Schiff base ligand Scientific paper
Main Article Content
Abstract
The Schiff base ligand, namely (7E)-N-benzylidene-2-styrylbenzenamine-1,2-diamine-2,4-dihydroxy-phenol (L), was synthesized by condensation of 2,4-dihydroxybenzaldehyde with o-phenylenediamine. The reaction of the ligand with Fe(III), Co(II) and Ni(II) salts in an 1:1 ratio yielded three complexes (1–3). Different analytical tools, like elemental analysis, ESI-MS, UV–Vis, FT-IR, NMR and EPR spectroscopy, then molar conductivity and magnetic susceptibility spectra, were used to elucidate the structure of the ligand and complexes. Density functional theory calculation at the B3LYP/3-211G++/LANL2DZ level of the theory has been carried out to optimize the geometry of the ligand and complexes. The tetradentate ligand has coordinated to metals through ONNO donors affording octahedral geometry. Complexes were studied for their oxygen-binding activity and free radical scavenging activities. Complexes 1 and 2, which contain Fe(IIl) and Co(II), displayed reversible oxygen binding activity. On the other hand, complex 3 fails to show oxygen binding. The order of antioxidant activity is: 3 > 1 > 2 > L.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
References
V. Tsumaki, Bull. Chem. Soc. Jpn. 13 (1938) 262 (https://dx.doi.org/10.1246/bcsj.13.252)
M. F. Perutz, Trends Biochem. Sci. 14 (1990) 42 (https://dx.doi.org/10.1016/0968-0004(89)90039-x)
M. Wirstam, S. J. Lippard, R. A. Friesner, J. Am. Chem. Soc. 13 (2003) 3980 (https://dx.doi.org/10.1021/ja017692r)
M. S. Vad, F. B. Johansson, R. K. S. Egdal, J. E. McGrady, S. M. Novikov, S. I. Bozhevolnyi, A. D. Bonda, Dalton Trans. 42 (2013) 9921 (https://dx.doi.org/10.1039/c3dt50617g)
B. M. Hoffman, D. H. Petering, Proc. Natl. Acad. Sci. USA 67 (1970) 627 (https://dx.doi.org/10.1073/pnas.67.2.637)
J. H. Bowen, N. V. Shokhirev, A. M. Raitsimring, D. H. Buttlaire, F. A. Walker, J. Phys. Chem., B 101 (1997) 8683 (https://dx.doi.org/10.1021/jp9711306)
W. R. Scheidt, J. L. Hoard, J. Am. Chem. Soc. 95 (1973) 8281 (https://dx.doi.org/10.1021/ja00806a013)
A. A. A. Emara, A. M. Ali, A. F. El-Asmy, E. M. Ragab, J. Saudi Chem. Soc. 18 (2011) 762 (https://dx.doi.org/10.1016/j.jscs.2011.08.002)
L. Liu, M. S. Alam, D. U. Lee, Bull. Korean Chem. Soc. 33 (2012) 3361 (http://dx.doi.org/10.5012/bkcs.2012.33.10.3361)
G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogels Textbook of Quantitative Inorganic Analysis, 5th ed., John Wiley & Sons, Inc., New York, 1989
M. Montazerozohori, S.A. Musavi, A. Masoudias, A. Hojjati, A. Assoud, Spectrochim. Acta, A 147 (2015) 139 (http://dx.doi.org/10.1016/j.saa.2015.03.028)
Gaussian-09 software package, Gaussian Inc. Wallingford, CT, 2009
M. Dehestani, L. Zeidabadinejad, J. Serb. Chem. Soc. 80 (2015) 1008 (https://dx.doi.org/10.2298/JSC150224027Z)
S. N. Shukla, P. Gaur, M. L. Raidas, B. Chaurasia, J. Mol. Struc. 1202 (2020) 127362 (https://dx.doi.org/10.1016/j.molstruc.2019.127362)
A. Huber, L. Müller, H. Elias, R. Klement, M. Valko, Euro. J. Inorg. Chem. 8 (2005) 1459 (https://dx.doi.org/10.1002/ejic.200400888)
T. J. Beugelsdijk, R. S. Drago, J. Am. Chem. Soc. 97 (1975) 6466 (https://dx.doi.org/10.1021/ja00855a028)
N. J. Rose, R. S. Drago, J. Am. Chem. Soc. 81 (1959) 6138 (https://dx.doi.org/10.1021/ja01532a009)
M. Kumar, T. Padmini, K. Ponnuvel, J. Saudi Chem. Soc. 21 (2017) 322 (https://dx.doi.org/10.1016/j.jscs.2014.03.006)
W. J. Gear, J. Coord. Chem. Rev. 7 (1971) 81(https://dx.doi.org/10.1016/S0010-8545(00)80009-0)
S. N. Shukla, P. Gaur, P. Vaidya, B. Chaurasia, S. Jhariya, J. Coord. Chem. 71 (2018) 3912 (https://dx.doi.org/10.1080/00958972.2018.1536267)
S. N. Shukla, P. Gaur, S. Jhariya, B. Chaurasia, P. Vaidya, M. Azam, J. Coord. Chem. 72 (2019) 664 (https://dx.doi.org/10.1080/00958972.2019.1572885)
N. Ignjatović, S. Vranješ, Ž. Mitić, D. Janković, D. Uskoković, J. Mat. Sci. Eng., C 43 (2014) 439 (https://dx.doi.org/10.1016/j.msec.2014.07.046)
A. P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502 (https://dx.doi.org/10.1021/jp960976r)
S. Chandra, L. K. Gupta, Trans. Metal Chem. 32 (2007) 558 (https://dx.doi.org/10.1007/s11243-007-0201-y)
F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advances in Inorganic Chemistry, Sixth ed., Wiley, New York, 1999
R. Mehrotra, S. N. Shukla, P. Gaur, J. Coord. Chem. 65 (2012) 176 (https://dx.doi.org/10.1080/00958972.2011.645814)
R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, Spectr. Ident. Org. Com. 1991 (1998) 226
P. Pietrzyk, M. Srebro, M. Radon, Z. Sojka, A. Michalak, J. Phys. Chem., A 115 (2011) 2316 (https://dx.doi.org/10.1021/jp109524t)
T. Bardakçi, M. Kumru, A. Altun, J. Mol. Struct. 1116 (2016) 292 (https://dx.doi.org/10.1016/j.molstruc.2016.03.023)
S. Sebastian, N. Sundaraganesan, Spectrochim Acta, A 75(2010) 941 (https://dx.doi.org/10.1016/j.saa.2009.11.030)
I. Rajaei, S. N. Mirsattari, Polyhedron 112 (2015) 479 (https://doi.org/10.1016/j.poly.2015.10.019)
J. M. Mir, D. K. Rajak, R. C. Maurya, J. Coord. Chem. 70 (2017) 3199 (https://dx.doi.org/10.1080/00958972.2017.1374381)
M. R. Anneser, S. Haslinger, A. Pöthig, M. Cokoja, V. DElia, M. P. Högerl, J. M. Basset, F. E Kühn, Dalton Trans. 45 (2016) 6449 (https://dx.doi.org/10.1039/c6dt00538a)
M. Pająk, M. Woźniczka, A. Vogt, A. Kufelnicki, Chem. Central J. 11 (2017) 90 (https://dx.doi.org/10.1186/s13065-017-0319-8)
A. Pui, Croat. Chem. Acta 75 (2002) 165
M. S. Alam, D-U Lee, Bull. Korean Chem. Soc. 36 (2015) 682 (https://onlinelibrary.wiley.com/doi/full/10.1002/bkcs.10132).