Synthesis, spectroscopic characterization, DFT, oxygen binding and antioxidant activity of Fe(III), Co(II) and Ni(II) complexes with a tetradentate ONNO donor Schiff base ligand Scientific paper

Main Article Content

Satyendra Nath Shukla
https://orcid.org/0000-0002-9827-8953
Pratiksha Gaur
Mohan Lal Raidas
Singh Bagri

Abstract

The Schiff base ligand, namely (7E)-N-benzylidene-2-styrylbenzen­amine-1,2-diamine-2,4-dihydroxy-phenol (L), was synthesized by conden­sation of 2,4-dihydroxybenzaldehyde with o-phenylenediamine. The reaction of the ligand with Fe(III), Co(II) and Ni(II) salts in an 1:1 ratio yielded three com­plexes (13). Different analytical tools, like elemental analysis, ESI-MS, UV–Vis, FT-IR, NMR and EPR spectroscopy, then molar conductivity and magnetic susceptibility spectra, were used to elucidate the structure of the lig­and and complexes. Den­sity functional theory calculation at the B3LYP/3-211G++/LANL2DZ level of the theory has been carried out to optimize the geometry of the ligand and complexes. The tetradentate ligand has coordinated to metals through ONNO donors affording octahedral geometry. Complexes were studied for their oxygen-binding activity and free radical scavenging acti­vities. Complexes 1 and 2, which contain Fe(IIl) and Co(II), displayed rever­sible oxygen binding activity. On the other hand, complex 3 fails to show oxy­gen binding. The order of antioxidant activity is: 3 > 1 > 2 > L.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. N. Shukla, P. . Gaur, M. L. Raidas, and S. . Bagri, “Synthesis, spectroscopic characterization, DFT, oxygen binding and antioxidant activity of Fe(III), Co(II) and Ni(II) complexes with a tetradentate ONNO donor Schiff base ligand: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 10, pp. 941–954, Sep. 2021.
Section
Inorganic Chemistry
Author Biography

Pratiksha Gaur, Coordination Chemistry Research Lab, Department of Chemistry, Govt. Science College, Jabalpur (M.P.) India

 

 

References

V. Tsumaki, Bull. Chem. Soc. Jpn. 13 (1938) 262 (https://dx.doi.org/10.1246/bcsj.13.252)

M. F. Perutz, Trends Biochem. Sci. 14 (1990) 42 (https://dx.doi.org/10.1016/0968-0004(89)90039-x)

M. Wirstam, S. J. Lippard, R. A. Friesner, J. Am. Chem. Soc. 13 (2003) 3980 (https://dx.doi.org/10.1021/ja017692r)

M. S. Vad, F. B. Johansson, R. K. S. Egdal, J. E. McGrady, S. M. Novikov, S. I. Bozhevolnyi, A. D. Bonda, Dalton Trans. 42 (2013) 9921 (https://dx.doi.org/10.1039/c3dt50617g)

B. M. Hoffman, D. H. Petering, Proc. Natl. Acad. Sci. USA 67 (1970) 627 (https://dx.doi.org/10.1073/pnas.67.2.637)

J. H. Bowen, N. V. Shokhirev, A. M. Raitsimring, D. H. Buttlaire, F. A. Walker, J. Phys. Chem., B 101 (1997) 8683 (https://dx.doi.org/10.1021/jp9711306)

W. R. Scheidt, J. L. Hoard, J. Am. Chem. Soc. 95 (1973) 8281 (https://dx.doi.org/10.1021/ja00806a013)

A. A. A. Emara, A. M. Ali, A. F. El-Asmy, E. M. Ragab, J. Saudi Chem. Soc. 18 (2011) 762 (https://dx.doi.org/10.1016/j.jscs.2011.08.002)

L. Liu, M. S. Alam, D. U. Lee, Bull. Korean Chem. Soc. 33 (2012) 3361 (http://dx.doi.org/10.5012/bkcs.2012.33.10.3361)

G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogels Textbook of Quantitative Inorganic Analysis, 5th ed., John Wiley & Sons, Inc., New York, 1989

M. Montazerozohori, S.A. Musavi, A. Masoudias, A. Hojjati, A. Assoud, Spectrochim. Acta, A 147 (2015) 139 (http://dx.doi.org/10.1016/j.saa.2015.03.028)

Gaussian-09 software package, Gaussian Inc. Wallingford, CT, 2009

M. Dehestani, L. Zeidabadinejad, J. Serb. Chem. Soc. 80 (2015) 1008 (https://dx.doi.org/10.2298/JSC150224027Z)

S. N. Shukla, P. Gaur, M. L. Raidas, B. Chaurasia, J. Mol. Struc. 1202 (2020) 127362 (https://dx.doi.org/10.1016/j.molstruc.2019.127362)

A. Huber, L. Müller, H. Elias, R. Klement, M. Valko, Euro. J. Inorg. Chem. 8 (2005) 1459 (https://dx.doi.org/10.1002/ejic.200400888)

T. J. Beugelsdijk, R. S. Drago, J. Am. Chem. Soc. 97 (1975) 6466 (https://dx.doi.org/10.1021/ja00855a028)

N. J. Rose, R. S. Drago, J. Am. Chem. Soc. 81 (1959) 6138 (https://dx.doi.org/10.1021/ja01532a009)

M. Kumar, T. Padmini, K. Ponnuvel, J. Saudi Chem. Soc. 21 (2017) 322 (https://dx.doi.org/10.1016/j.jscs.2014.03.006)

W. J. Gear, J. Coord. Chem. Rev. 7 (1971) 81(https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

S. N. Shukla, P. Gaur, P. Vaidya, B. Chaurasia, S. Jhariya, J. Coord. Chem. 71 (2018) 3912 (https://dx.doi.org/10.1080/00958972.2018.1536267)

S. N. Shukla, P. Gaur, S. Jhariya, B. Chaurasia, P. Vaidya, M. Azam, J. Coord. Chem. 72 (2019) 664 (https://dx.doi.org/10.1080/00958972.2019.1572885)

N. Ignjatović, S. Vranješ, Ž. Mitić, D. Janković, D. Uskoković, J. Mat. Sci. Eng., C 43 (2014) 439 (https://dx.doi.org/10.1016/j.msec.2014.07.046)

A. P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502 (https://dx.doi.org/10.1021/jp960976r)

S. Chandra, L. K. Gupta, Trans. Metal Chem. 32 (2007) 558 (https://dx.doi.org/10.1007/s11243-007-0201-y)

F. A. Cotton, G. Wilkinson, C. A. Murillo, M. Bochmann, Advances in Inorganic Chemistry, Sixth ed., Wiley, New York, 1999

R. Mehrotra, S. N. Shukla, P. Gaur, J. Coord. Chem. 65 (2012) 176 (https://dx.doi.org/10.1080/00958972.2011.645814)

R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, Spectr. Ident. Org. Com. 1991 (1998) 226

P. Pietrzyk, M. Srebro, M. Radon, Z. Sojka, A. Michalak, J. Phys. Chem., A 115 (2011) 2316 (https://dx.doi.org/10.1021/jp109524t)

T. Bardakçi, M. Kumru, A. Altun, J. Mol. Struct. 1116 (2016) 292 (https://dx.doi.org/10.1016/j.molstruc.2016.03.023)

S. Sebastian, N. Sundaraganesan, Spectrochim Acta, A 75(2010) 941 (https://dx.doi.org/10.1016/j.saa.2009.11.030)

I. Rajaei, S. N. Mirsattari, Polyhedron 112 (2015) 479 (https://doi.org/10.1016/j.poly.2015.10.019)

J. M. Mir, D. K. Rajak, R. C. Maurya, J. Coord. Chem. 70 (2017) 3199 (https://dx.doi.org/10.1080/00958972.2017.1374381)

M. R. Anneser, S. Haslinger, A. Pöthig, M. Cokoja, V. DElia, M. P. Högerl, J. M. Basset, F. E Kühn, Dalton Trans. 45 (2016) 6449 (https://dx.doi.org/10.1039/c6dt00538a)

M. Pająk, M. Woźniczka, A. Vogt, A. Kufelnicki, Chem. Central J. 11 (2017) 90 (https://dx.doi.org/10.1186/s13065-017-0319-8)

A. Pui, Croat. Chem. Acta 75 (2002) 165

M. S. Alam, D-U Lee, Bull. Korean Chem. Soc. 36 (2015) 682 (https://onlinelibrary.wiley.com/doi/full/10.1002/bkcs.10132).

Most read articles by the same author(s)