Statistical optimization of bioethanol production from waste bread hydrolysate Scientific paper

Main Article Content

Katarina Radoslav Mihajlovski
https://orcid.org/0000-0002-4436-256X
Marija Milić
https://orcid.org/0000-0002-1528-4283
Danijela Pecarski
Suzana Dimitrijević-Branković
https://orcid.org/0000-0001-6849-6936

Abstract

A recent trend in sustainable bioethanol production is using agricultural waste or food waste as inexpensive and the most available feedstock. Bread waste is the major food waste that could be successfully used for the production of bioethanol. The aim of this study was to optimize ethanol production by res­ponse surface methodology (RSM) using waste bread hydrolysate. Waste bread hydrolysate was obtained using crude hydrolytic enzymes that produce bacterial isolate Hymenobacter sp. CKS3. The influence of time of fermentation (24-72 h) and waste brewer’s yeast inoculum (1 - 4 %) on ethanol production was studied. The optimal conditions, obtained by central composite design (CCD), were 48.6 h of fermentation and 2.85 % of inoculum. Under these conditions, a maximum of 2.06 % of ethanol concentration was reached. The obtained ethanol concentration was in a good correlation coefficient of 0.858 with yeast cell yield. The obtained results in this study imply that waste bread hydrolysate could be used as a biomass source for biofuel production with multiple benefits relating to environmental protection, reduction of production costs, and saving fossil fuels.

Article Details

How to Cite
[1]
K. R. Mihajlovski, M. . Milić, D. . Pecarski, and S. Dimitrijević-Branković, “Statistical optimization of bioethanol production from waste bread hydrolysate: Scientific paper”, J. Serb. Chem. Soc., Apr. 2021.
Section
Biochemistry & Biotechnology

References

S. Tiwari, S. Jadhav and K. Tiwari, Int. J. Environ. Sci. Technol. 12 (2015) 3819 (https://doi.org/10.1007/s13762-014-0746-1)

S. Rezania, B. Oryani, J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P. F. Rupani, A. A. Mohammadi, Energy 199 (2020) 117457 (https://doi.org/10.1016/j.energy.2020.117457)

E. Demiray, S. E. Karatay and G. Dönmez, Environ. Sci. Pollut. Res. 26 (2019) 29366. (https://doi.org/10.1007/s11356-019-06020-1)

S. Nikolić, J. Pejin and L. Mojović, Chem. Ind. Chem. Eng. Q. 22 (2016) 1 (https://doi.org/10.2298/CICEQ151030001N)

H. S. Hafid, U. K. M. Shah, A. S. Baharuddin, A. B. Ariff, Renew. Sust. Energ. Rev. 74 (2017) 671 (https://doi.org/10.1016/j.rser.2017.02.071)

A. Walter, F. Rosillo-Calle, P. Dolzan, E. Piacente, K. B. da Cunha, Biomass Bioenerg. 32 (2008) 730 (https://doi.org/10.1016/j.biombioe.2008.01.026)

P. Dinesha, S. Kumar, M. A. Rosen, Environ. Sci. Pollut. Res. 26 (2019) 8069 (https://doi.org/10.1007/s11356-019-04270-7)

J. Dodić, J. Grahovac, Z. Rončević, R. Pajović-Šćepanović, S. Dodić, B. Bajić and D. Vučurović, J. Process. Energy Agric. 22 (2018) 34 (https://doi.org/10.5937/JPEA1801034D)

C. A. Cardona, Ó. J. Sánchez, Biores. Technol. 98 (2007) 2415 (https://doi.орг/10.1016/j.biortech.2007.01.002)

J. R. Kwiatkowski, A. J. McAloon, F. Taylor, D. B. Johnston, Ind. Crop. Prod. 23 (2006) 288 (https://doi.org/10.1016/j.indcrop.2005.08.004)

A. S. Demirci, I. Palabıyık, T. Gümüs, Ş. Özalp, Waste Biomass Valor. 8 (2017) 775 (https://doi.org/10.1016/j.indcrop.2005.08.004)

A. L. Young, Environ. Sci. Pollut. Res. 16 (2009) 117 (https://doi.org/10.1007/s11356-009-0106-8)

W. Pietrzak, J. Kawa-Rygielska, Fuel 134 (2014) 250 (https://doi.org/10.1016/j.fuel.2014.05.081)

K. C. Thomas, W. Ingledew, Appl. Environ. Microbiol. 56 (1990) 2046 (https://doi.org/10.1007/BF02916454)

R. Ravindran, S. Hassan, G. Williams, A. Jaiswal, Bioeng. 5 (2018) 93 (https://doi.org/10.3390/bioengineering5040093)

K. Mihajlovski, M. Rajilić-Stojanović, S. Dimitrijević-Branković, Renew. Energ. 152 (2020) 627 (https://doi.org/10.1016/j.renene.2020.01.101)

G. L. Miller, Anal. Chem. 31 (1959) 426 (https://doi.org/10.1021/ac60147a030)

K. Mihajlovski, Ž. Radovanović, M. Carević, S. Dimitrijević-Branković, Fuel 224 (2018) 591 (https://doi:10.1016/j.fuel.2018.03.135)

W. Horwitz, P. Chichilo, H. Reynolds, Official methods of analysis of the Association of Official Analytical Chemists, 1970 (https://www.cabdirect.org/cabdirect/abstract/19720492404)

D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, New York, United States, 2008 (ISBN: 9781119113478)

M. A. Saeed, H. Ma, S. Yue, Q. Wang, M. Tu, Environ. Sci. Pollut. Res. 25 (2018) 28851 (https://doi.org/10.1007/s11356-018-2972-4)

T. W. Nagodawithana and K. H. Steinkraus, Appl. Environ. Microbiol. 31 (1976) 158 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169741/pdf/aem00002-0022.pdf)

G. Izmirlioglu, A. Demirci, Appl. Sci. 2 (2012) 738 (https://doi.org/10.3390/app2040738)

S. H. Mohd Azhar, R. Abdulla, S. A. Jambo, H. Marbawi, J. A. Gansau, A. A. Mohd Faik, K. F. Rodrigues, B. B. Reports 10 (2017) 52 (https://doi.org/10.1016/j.bbrep.2017.03.003)

F. Bai, W. Anderson, M. Moo-Young, Biotechnol. Adv. 26 (2008) 89 (https://doi.org/10.1016/j.biotechadv.2007.09.002)

O. O. Awolu, I. O. Ibileke, Afr. J. Food Sci. 5 (2011)148 (https://academicjournals.org/journal/AJFS/article-full-text-pdf/CBEEF3D3037)

P. Datta, S. Tiwari, L. Pandey, in Utilization and Management of Bioresources, Springer, Singapore, 2018 (https://doi.org/10.1007/978-981-10-5349-8)

F. Ebrahimi, M. Khanahmadi, S. Roodpeyma, M. J. Taherzadeh, Biomass Bioenerg. 32 (2008) 333 (https://doi.org/10.1016/j.biombioe.2007.10.007)

J. Kawa-Rygielska, W. Pietrzak, A. Czubaszek, Biomass Bioenerg. 44 (2012) 17 (https://doi.org/10.1016/j.biombioe.2012.04.016)

L. R. Lynd, H.-J. Ahn, G. Anderson, P. Hill, D. S. Kersey, T. Klapatch, Appl.Biochem. Biotechnol. 28 (1991) 549 (https://doi.org/10.1007/BF02922633)

M. E. Ojewumi, O. E. Kolawole, D. Oyekunle, O. S. Taiwo, A. Adeyemi, J. Ecol. Eng. 20 (2019) 35 (https://doi.org/10.12911/22998993/102614)

G. M. Walker, G. G. Stewart, Beverages 2 (2016) 30 (https://doi.org/10.3390/beverages2040030)