The influence of active learning and submicrorepresentations on 14-year-old students understanding of the alkaline earth metal concepts Scientific paper

Main Article Content

Katarina Wissiak Grm
https://orcid.org/0000-0001-8523-3564
Iztok Devetak
https://orcid.org/0000-0003-4719-8424

Abstract

This study aimed to examine the impact of two different approaches on students understanding of selected chemical concepts. The first treatment group was taught by a method comprising guided active learning demonstrat­ions, and the second treatment group was exposed to guided active learning demonstrations with explanations at the submicroscopic level. In a control group, the selected topic was taught without guided active learning demon­strations and without explanations at the submicroscopic level. The instruments used in this research included the test of logical thinking (TOLT), knowledge pre-test (KPT), two achievement tests (AT-1 and AT-2) and a questionnaire for students. One hundred and seventy-one students (average age 13.9 years) par­ti­cipated in the study. The results indicate that both approaches (i.e., guided active learning demonstrations and guided active learning demonstrations with explanations at submicroscopic level) are more effective than only symbolic teaching. It can be concluded from the results that students knowledge, obtained by either method that includes guided active learning, is retained in the students long-term memory. Some suggestions for implications for the primary science curriculum are also discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
K. Wissiak Grm and I. Devetak, “The influence of active learning and submicrorepresentations on 14-year-old students understanding of the alkaline earth metal concepts: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 2, pp. 275–290, Nov. 2021.
Section
History of & Education in Chemistry

References

A. H. Johnstone, Sch. Sci. Rev. 64 (1982) 377

D. Gabel, J. Chem. Educ. 76 (1999) 548 (https://doi.org/10.1021/ed076p548)

D. F. Treagust, A. G. Harrison, G. J. Venville, J. Sci. Teacher Educ. 9 (1998) 85 (https://doi.org/10.1023/A:1009423030880)

H. K.Wu, J. S. Krajcik, E. Soloway, J. Sci. Teacher Educ. 38 (2001) 821 (https://doi.org/10.1002/tea.1033)

A. G. Harrison, D. F. Treagust, Chemical Education: Towards Research-Based Practice, Kluwer Academic Publishers, Dordrecht, 2002, pp. 189–212 (https://www.academia.edu/5488505/Chemical_education_towards_research_based_practice_science_technology)

D. F. Treagust, G. Chittleborough, T. Mamiala, Int. J. Sci. Educ. 25 (2003) 1353 (https://doi.org/10.1080/0950069032000070306)

J. E. Upahi, U. Ramnarain, Chem. Educ. Res. Pract. 20 (2019) 146 (https://doi.org/10.1039/C8RP00191J)

R. M. Kelly, L. L. Jones, J. Chem. Educ. 85 (2008) 303 (https://doi.org/10.1021/ed085p303)

I. Devetak, S. A. Glažar, Int. J. Sci. Educ. 32 (2010) 1561 (https://doi.org/10.1080/09500690903150609)

J. M. Nyachwaya, M. Gillaspie, Chem. Educ. Res. Pract. 17 (2016) 58 (https://doi.org/10.1039/C5RP00140D)

N. Becker, C. Stanford, M. Towns, R. Cole, Chem. Educ. Res. Pract. 16 (2015) 769 (https://doi.org/10.1039/C5RP00064E)

D. D. Rodić, T. N. Rončević, M. D. Segedinac, Acta Chim. Slov. 65 (2018) 394 (http://dx.doi.org/10.17344/acsi.2017.4139)

L. Dee Fink, Creating significant learning experiences: An integrated approach to designing college courses. Calif: Jossey-Bass, San Francisco, CA, 2003, pp. 102–154 (https://www.wiley.com/ensi/Creating+Significant+Learning+Experiences%3A+An+Integrated+Approach+to+Designing+College+Courses%2C+Revised+and+Updated-p-9781118416327)

K. L. Adams, J. A. Luft, Int. J. Sci. Educ. 13 (2018) 69

G. Papageorgiou, P. Johnson, Int. J. Sci. Educ. 27 (2005) 1299 (https://doi.org/10.1080/09500690500102698)

M. Stains, V. Talanquer, Int. J. Sci. Educ. 29 (2007) 643 (https://doi.org/10.1080/09500690600931129)

B. Davidowitz, G. Chittleborough, E. Murray, Chem. Educ. Res. Pract. 11 (2010) 154 (https://doi.org/10.1039/C005464J)

V. Talanquer, Int. J. Sci. Educ. 33 (2011) 179 (https://doi.org/10.1080/09500690903386435)

K. de Berg, Chem. Educ. Res. Pract. 13 (2012) 8 (https://doi.org/10.1039/C1RP90056K)

U. Ramnarain, U. A. Joseph, Chem. Educ. Res. Pract. 13 (2012) 462 (https://doi.org/10.1039/C2RP20071F)

K. S. Taber, Chem. Educ. Res. Pract. 14 (2013) 151 (https://doi.org/10.1039/C3RP00012E)

M. M. W. Cheng, J. K. Gilbert, Int. J. Sci. Educ. 39 (2017) 1173 (http://dx.doi.org/10.1080/09500693.2017.1319989)

D. D. Trivić, V. D. Milanovič, J. Serb. Chem. Soc. 83 (2018) 1177 (http://doi.org/10.2298/JSC171220055T)

G. Chittleborough, Learning with Understanding in the Chemistry Classroom, Springer, Dordrecht, 2014, pp. 25–40 (https://www.springer.com/gp/book/9789400743656)

I. Devetak, J. Vogrinc, S. A. Glažar, Res. Sci. Educ. 39 (2009) 157 (https://doi.org/10.1007/s11165-007-9077-2)

J. D. Bradley, M. Brand, G. G. Gerrans, S. Afr. J. Sci. Educ. 37 (1998) 85

N. Solsona, M. Izquierdo, M. O. De Jong, Int. J. Sci. Educ. 25 (2003) 3

E. Adadan, K. C. Trundle, K. E. Irving, J. Res. Sci. Teach. 47 (2010) 1004 (https://doi.org/10.1002/tea.20366)

A. L. Kerna, N. B. Woodb, G. H. Roehrigc, J. Nyachwayac, Chem. Educ. Res. Pract. 11 (2010) 165 (https://doi.org/10.1039/C005465H)

O. Lee, D. C. Eichinger, C. W. Anderson, G. D. Berkheimer, T. D. Blakeslee, J. Res. Sci. Teach. 30 (1993) 249 (https://doi.org/10.1002/tea.3660300304)

C. Bonwell, J. Eison, Active Learning: Creating Excitement in the Classroom, George Washington University, Washington, DC, 1991 (https://eric.ed.gov/?id=ED336049)

J. S. Bruner, Harv. Educ. Rev. 31 (1961) 21

D. Muijs, D. Reynolds, Effective teaching: Evidence Based Practice, Sage Publications, London, 2017

P. A. Kirschner, J. Sweller, R. E. Clark, Educ. Psychol. 41 (2006) 75 (https://doi.org/10.1207/s15326985ep4102_1)

P. H. Walton, Univ. Chem, Educ. 6 (2002) 22

G. Tsaparlis, Learning with Understanding in the Chemistry Classroom, Springer, Dordrecht, 2014, pp. 41–61 (https://www.springer.com/gp/book/9789400743656)

National Research Council, How People Learn: Brain, Mind, Experience, and School: Expanded Edition, The National Academies Press, Washington, DC. 2000. pp. 3–23 (https://www.nap.edu/catalog/9853/how-people-learn-brain-mind-experience-and-school-expanded-edition)

R. Moreno, Instr. Sci. 32 (2004) 99 (https://doi.org/10.1023/B:TRUC.0000021811.66966.1d)

L. Deslauriers, L. S. McCarty, K. Miller, K. Callaghan, G. Kestin, PNAS 116 (2019) 19251 (https://doi.org/10.1073/pnas.1821936116)

K. G. Tobin, W. Capie, Educ. Psychol. Meas. 41 (1981) 413 (https://doi.org/10.1177/001316448104100220)

B. Marentič Požarnik, Psychology of learning and instruction, DZS, Ljubljana, 2000 (https://doi.org/10.4312/as.6.4.150-152) (in Slovenian)

V. M. Williamson, M. R. Abraham, J. Res. Sci. Teach. 32 (1995) 521 (https://doi.org/10.1002/tea.366032050843)

G. Chittleborough, D. F. Treagust, Chem. Educ. Res. Pract. 8 (2007) 274 (https://doi.org/10.1039/B6RP90035F)

J. S. Chall, The academic achievement challenge, Guilford Press, New York, 2000

D. Klahr, M. Nigam, Psychol. Sci. 15 (2004) 661 (https://doi.org/10.1111/j.0956-7976.2004.00737.x)

I. Devetak, S. A. Glažar, Facilitating effective student learning through teacher research and innovation, University of Ljubljana, Faculty of Education, Ljubljana,2010, pp. 399–

–414 (http://www.pef.uni-lj.si/ceps/knjiznica/doc/zuljan-vogrinc.pdf)

D. M. Bunce, D. Gabel, J. Res. Sci. Teach. 39 (2002) 911 (https://doi.org/10.1002/tea.10056).

Most read articles by the same author(s)