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Abstract: In this paper, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study for 62 HIV-1 integrase(IN) inhibitors was established using Topomer CoMFA. The multiple correlation coefficient of fitting, cross validation and external validation were 0.942, 0.670 and 0.748, respectively. The results indicated that the Topomer CoMFA model obtained has both favorable estimation stability and good prediction capability. Topomer Search was used to search R group from ZINC database. As the result, a series of R groups with relatively high activity contribution was obtained. By filtering with the most potent molecule in the set, 1 Ra group and 21 Rb groups were selected. We employed the 1 Ra groups and 21 Rb groups to alternately substitutes for the Ra and Rb of sample 42. Finally, we designed 21 new compounds and further predicted their activities using the Topomer CoMFA model and there were 10 new compounds with higher activity than that of the template molecule. The results suggested the Topomer Search technology could be effectively used to screen and design new HIV-1 IN inhibitors and has good predictive capability to guide the design of new HIV/AIDS drugs. 
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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) has been a threat to human health since it was first reported in 1981.1, 2 Anti-HIV drug development has been one of the leading tasks in the drug discovery area with the increase in the number of AIDS sufferers.3 The inherent proteins involved in viral replication cycle have been used as drug targets to design inhibitors to prevent the spread of infection, such as reverse transcriptase(RT), protease(PR), integrase(IN), Glycoprotein(gp41 and gp120), as well as the host cell receptor(CD4) and coreceptor(CCR5 and CXCR4).4 22 drugs comprising reverse transcriptase inhibitors(RTI), protease inhibitors(PI) and entry inhibitors have been approved by the FDA for the treatment of HIV infection. Unfortunately, most of these drugs have produced different degrees of resistance. So the research and development of new drugs has become the urgent priority. Human immunodeficiency virus-1 (HIV-1) is characterized by reverse transcription of the viral RNA genome to cDNA and its integration into the host cell genome. Then, the integrated proviral DNA with a long terminal repeat (LTR) at each end is transcribed, leading to synthesis of viral proteins and completion of the viral replication cycle. IN plays a pivotal role of virus replication. Moreover, IN is not present in the host cell but in the virus itself and has no mammalian counterparts. 5, 6, 7 Thus, IN becomes an attractive and suitable target for the development of anti-AIDS drugs. HIV-1 IN is a 3＇-pol -gene-encoded enzyme containing 288 amino acid residues.8, 9 HIV-1 IN comprise three domains: the N-terminal domain, the C-terminal domain and the catalytic domain. The catalytic domain contains a DDE motif (D64, D116, and E152) that forms metal chelating interactions with one or two divalent metal ions, such as Mn2+ and Mg2+.10 The whole process that HIV-1 cDNA’ integration into the host cell’s chromosomes by HIV-1 IN contains two steps: 3＇-processing and strand transfer. Raltegravir(RAL) became the first IN strand transfer inhibitor approved by FDA in 2007.11, 12
The availability of computational techniques on quantitative structure activity relationships (QSARs) might provide a potential direction for accelerating the drug design process. In fact, QSAR can be viewed as a technique attempting to summarize chemical and biological information in a form that allows one to generate relationships between chemical structure and biological activity.13 As is well known, the success of a QSAR study depends also on the selection of variables (molecular descriptors) and on the representation of the information. Variables should give the maximum of information in the activity variations. 3D-QSAR model would better reflect the interactions between the ligand and receptor compared to 2D-QSAR. Comparative molecular field analysis (CoMFA)14 is the method used widely of 3D-QSAR. In this paper, Topomer CoMFA, 15, 16 the second generation of CoMFA was employed to construct the 3D-QSAR model for 62 HIV-1 IN inhibitors to analyze the chemical-biological interactions governing their activities toward HIV-1 IN. The Topomer CoMFA model would be also applied to conduct ligand-based virtual screening combining the Topomer Search17 technology to lay the foundation of new drug design.

PRINCIPLES AND METHODS

Data set

In this study, the structures and experimental data of the 62 HIV-1 IN inhibitors obtained from the literature18 are shown in Table 1. The dataset was systematically divided into the training set (45 compounds) and the test set (17 compounds). The number of test set compounds was approximately 30% that of the training set compounds, which was considered as a proper ratio.19 The training set was applied to build the 3D-QSAR model and, for the test set, was used to verify the predictive ability of the model. The bioactivities of inhibitors were presented in pIC50(-logIC50). IC50 represents the concentration of an inhibitor that is required for 50% inhibition of things. 
Table 1 Structures and bioactivities of 62 integrase inhibitors
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50-53 54-59
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	NO.
	R1
	R2
	R3
	R4
	R5
	R6
	IC50(μM)
	Exp. 
pIC50
	Pred. pIC50

	1
	＿
	
	
	
	
	
	0.05
	7.3010
	7.4712

	2*
	H
	H
	H
	H
	H
	H
	1.63
	5.7878
	5.7911

	3
	H
	H
	H
	H
	H
	CH3
	2.30
	5.6383
	5.6374

	4
	H
	Cl
	H
	H
	OH
	H
	0.80
	6.0969
	6.2438

	5
	Cl
	H
	H
	H
	OH
	H
	0.41
	6.3872
	6.0375

	6*
	F
	H
	H
	H
	OH
	H
	0.50
	6.3010
	6.3172

	7
	Me
	H
	H
	H
	OH
	H
	1.08
	5.9666
	5.9750

	8
	OMe
	H
	H
	H
	OH
	H
	1.17
	5.9318
	5.8369

	9
	CF3
	H
	H
	H
	OH
	H
	0.72
	6.1427
	5.8379

	10
	Cl
	H
	H
	Cl
	OH
	H
	0.37
	6.4318
	6.4454

	11*
	H
	Cl
	H
	Cl
	OH
	H
	0.25
	6.6021
	6.2876

	12
	Cl
	Cl
	H
	H
	OH
	H
	0.07
	7.1549
	7.0814

	13
	Cl
	Cl
	H
	H
	OH
	Me
	0.083
	7.0809
	7.1392

	14*
	Cl
	Cl
	H
	H
	OH
	Et
	0.031
	7.5086
	7.3118

	15
	Cl
	Cl
	H
	H
	OH
	Pr
	0.055
	7.2596
	7.3060

	16
	Cl
	Cl
	H
	H
	OH
	iPr
	0.026
	7.5850
	7.4435

	17
	Cl
	Cl
	H
	H
	OH
	Bu
	0.065
	7.1871
	7.0327

	18*
	Cl
	Cl
	H
	H
	OH
	CH2CO2H
	0.032
	7.4949
	7.4264

	19
	Cl
	Cl
	H
	H
	OH
	(CH2)2CO2H
	0.038
	7.4202
	7.3982

	20
	Cl
	Cl
	H
	H
	OH
	CH2CONH2
	0.035
	7.4559
	7.4534

	21*
	Cl
	Cl
	H
	H
	OH
	(CH2)2CONH2
	0.116
	6.9355
	7.2167

	22
	Cl
	Cl
	H
	H
	OH
	(CH2)2NH2
	0.215
	6.6676
	7.2085

	23
	Cl
	Cl
	H
	H
	OH
	(CH2)2OH
	0.021
	7.6778
	7.4673

	24
	Cl
	Cl
	H
	H
	OH
	(CH2)3OH
	0.077
	7.1135
	7.2954

	25*
	Cl
	F
	H
	H
	OH
	(CH2)2OH
	0.044
	7.3565
	6.6186

	26
	F
	Cl
	H
	H
	OH
	(CH2)2OH
	0.024
	7.6198
	7.8180

	27
	Cl
	Cl
	H
	H
	F
	H
	0.084
	7.0757
	7.0352

	28
	Cl
	Cl
	F
	H
	H
	＿
	0.025
	7.6021
	7.6280

	29
	Cl
	Cl
	H
	F
	H
	＿
	0.034
	7.4685
	7.4825

	30
	Cl
	Cl
	OMe
	H
	H
	＿
	0.012
	7.9208
	7.6462

	31*
	Cl
	Cl
	Cl
	H
	H
	＿
	0.043
	7.3665
	7.4009

	32
	Cl
	Cl
	Me
	H
	H
	＿
	0.041
	7.3872
	7.5342

	33*
	Cl
	Cl
	CF3
	H
	H
	＿
	0.674
	6.1713
	6.9872

	34
	Cl
	Cl
	CN
	H
	H
	＿
	0.050
	7.3101
	7.4231

	35
	F
	Cl
	OMe
	H
	H
	＿
	0.009
	8.0458
	7.9970

	36
	H
	(S)-Me
	＿
	＿
	＿
	＿
	0.0148
	7.8297
	7.9084

	37
	H
	(R)-Me
	＿
	＿
	＿
	＿
	0.0383
	7.4168
	7.9076

	38*
	H
	(S)-Et
	＿
	＿
	＿
	＿
	0.009
	8.0458
	7.9384

	39
	H
	(S)-Pr
	＿
	＿
	＿
	＿
	0.0082
	8.0862
	7.7193

	40*
	H
	(S)-iPr
	＿
	＿
	＿
	＿
	0.0082
	8.0862
	7.9061

	41
	H
	(S)-tBu
	＿
	＿
	＿
	＿
	0.006
	8.2218
	7.9751

	42
	H
	(S)-cyclohexyl
	＿
	＿
	＿
	
	0.0056
	8.2518
	7.9954

	43
	H
	(S)-Ph
	＿
	＿
	＿
	＿
	0.0098
	8.0088
	8.0302

	44*
	OMe
	(S)-Pr
	＿
	＿
	＿
	＿
	0.0058
	8.2366
	7.8725

	45
	OMe
	(S)-iPr
	＿
	＿
	＿
	＿
	0.0072
	8.1427
	8.0813

	46
	OMe
	(R)-iPr
	＿
	＿
	＿
	＿
	0.0144
	7.8416
	7.6121

	47
	OMe
	(S)-tBu
	＿
	＿
	＿
	＿
	0.0058
	8.2366
	8.1655

	48*
	OMe
	(S)-cyclohexyl
	＿
	＿
	＿
	
	0.0067
	8.1739
	8.1191

	49
	＿
	
	
	
	
	
	9
	5.0458
	5.1364

	50
	Bn
	CH3
	＿
	＿
	＿
	＿
	6
	5.2218
	5.2892

	51*
	4-F-Bn
	CH3
	＿
	＿
	＿
	＿
	0.9
	6.0458
	5.2451

	52
	OPh
	CH3
	＿
	＿
	＿
	＿
	14
	4.8539
	4.7144

	53*
	4-F-Bn
	(CH2)4CH4
	＿
	＿
	＿
	＿
	5
	5.3010
	4.8765

	54
	H
	H
	H
	S
	(CH2)2OH
	＿
	18.5
	4.7328
	4.7834

	55
	Cl
	H
	Cl
	CH2
	(CH2)2OH
	＿
	0.2
	6.6990
	5.8825

	56
	Cl
	H
	Cl
	CH2
	(CH2)3OH
	＿
	1.3
	5.8861
	5.7093

	57*
	Cl
	H
	Cl
	CH2
	(CH2)4OH
	＿
	0.6
	6.2218
	5.9280

	58
	Cl
	H
	Cl
	CH2
	(CH2)2N-

(CH3)2
	
	24.1
	4.6180
	5.1304

	59
	Cl
	H
	Cl
	CH2
	(CH2)2O-

CH3
	＿
	16.5
	4.7825
	5.4701

	60
	F
	Cl
	NH
	＿
	＿
	＿
	2.1
	5.6778
	5.5582

	61*
	H
	H
	S
	＿
	＿
	＿
	1.6
	5.7959
	6.7275

	62
	＿
	
	
	
	
	
	0.0435
	7.3615
	7.4321


*Chosen as the test set
Molecular structure construction
The 3D structures of 62 HIV-1 IN inhibitors were constructed using the sketch module of Sybyl 2.0-X package. All molecules were optimized using tripos force field and gradient descent method with an energy change of 0.005 kcal/mol. Partial charges for all the molecules were added using the Gasteiger-Hückel method. The maximum iteration number was 1000. Other parameters were defaulted by Sybyl 2.0-X.

Topomer CoMFA modeling

Topomer CoMFA is a rapid fragment-based 3D-QSAR method to predict significant R-group of molecules. The Topomer CoMFA method identifies bioactivity values with the help of a compound library as a source with automated rules.14 The process of standard Topomer CoMFA is completed by the following two steps: the first step is generating the Topomer 3D models for each fragment of the molecule. Topomer CoMFA divides one compound into two or more fragments. By confirming how to break compounds’ structures, the Topomer CoMFA can identify the fragments’ features and charges automatically.20 The second step consists of performing CoMFA with partial least squares (PLS) using leave-one-out (LOO) cross-validation in order to form a predictive model.21 During the process of building the model, the CoMFA method is used to deal with the large amounts of data. By objective measures and automatic matching to analyse compounds’ characters, Topomer CoMFA is more efficient in forming predictive models compared with CoMFA.
In the process of Topomer CoMFA, the measure of fracture would affect the quality of the model. In this study, each of the training set structure was broken into two sets of fragments shown as Ra (blue) and Rb (red) groups as shown in Fig. 1. Initially, as molecule 42 had the highest activity, it was selected as the template molecule. Based on compound 42, the cutting style was confirmed. The molecule was cut to obtain the Ra group and Rb group. Other training molecules were identified automatically and cut in this style. The molecules not identified need to be cut manually. Then the steric and electrostatic field energy between the molecules were calculated. The descriptors obtained were considered as the independent variables and the pIC50 values were regarded as the dependent variables in partial least square (PLS)22 to build the Topomer CoMFA model. The model was evaluated by leave-one-out-cross validation (LOO-CV) approach. The test molecules were predicted by the Topomer CoMFA model to verify the predictive ability of the model obtained.
[image: image2.jpg]



Fig. 1 Cutting style of sample 42
Molecular screening
Molecular screening was carried out using the Topomer Search technology, a fast 3D ligand-based virtual screening tool. The principle is explained as following: the molecules in the database are cut into fragments, which are compared with the Topomer similarity of R groups of training molecules. Then the Topomer CoMFA model is used to predict their contributions to activity. Finally, a series of R groups will be obtained. In this study, Topomer Search was employed to search R groups with relatively high activity contribution from drug-like in ZINC (2012) database (130,000 compounds). Topomer distance was set as 185 to evaluate the binding degree, and other parameters were defaulted by Sybyl2.0-X.
RESULTS AND DISCUSSION
Topomer CoMFA modeling results and evaluation
To generate statistically significant 3D-QSAR models, we used the ligand-based alignment rule. In this study, the regression analysis was carried out using the partial least squares (PLS) method,23 some statistical parameters were used to analysis the stand or fall of these models, including the cross-validated coefficient (q2), the standard deviation of error prediction (r2), standard error of estimate (SEE) and F-statistic values, a high q2 and r2 value (q2 > 0.5, r2 > 0.6) is considered as a proof of high predictive ability of the model.24 The statistical results of model in this study are displayed in Table 2. As can be seen from the table, the q2 value of 0.670, an optimized component of 6 and r2 value of 0.942, which suggested the model also has predictive ability (q2 > 0.5). The pIC50 value of test set was predicted with the qpred2 value of 0.748. The linear regression between experimental pIC50 and predicted pIC50 for training set and test set are shown in Fig. 2. Table 1 shows the predicted bioactivities (pIC50) for training set and test set. The results indicate that the model has both favorable estimation stability and good prediction capabilities.
Peng Lu, Xia Wei and Ruisheng Zhang carried out 3D-QSAR analysis on series of quinoline carboxylic derivatives of HIV-1intergrase inhibitors using the CoMFA and CoMSIA method.25 Compared with this study involved more molecular structures being entered into the analysis. We achieved a fair result (q2=0.670, r2=0.942, SEE=0.277, F=103.344) with Topomer CoMFA models. Those results mean that the predictive models have a wider range to application and similar or even better molecular structure prediction than former work. Furthermore, the introduction of Topomer CoMFA provides us a brandnew method to analyze substitution with a functional group rather than with a functional atom. And by objective measures and automatic matching to analyze compounds’ characters, Topomer CoMFA is more efficient in forming predictive models. Hence, the work we have done has practical meaning and far-reaching influence. 

Table 2 The statistical results of Topomer CoMFA
	Statistical parametersa
	N
	r2
	q2
	qpred 2
	SEE
	SD
	SDCV
	F

	Topomer CoMFA
	6
	0.942
	0.670
	0.748
	0.277
	0.28
	0.67
	103.344


aN: optimal components, r2: The multiple correlation coefficient of fitting, q2: The multiple correlation coefficient of cross validation, q2pred: The multiple correlation coefficient of external validation, SEE: standard estimated error, SD: fitting standard deviation, SDcv: cross validation standard deviation, F: Fisher value
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Fig. 2 Linear regression between experimental and predicted pIC50 of 62 inhibitors
3D contour plots of Topomer CoMFA model

The three-dimensional contour plots of the Topomer CoMFA model are shown in Fig. 3(a-d) with the sample 42 as the reference structure. The contour maps provide information on factors affecting the activities of the molecules. This is particularly important when increasing or reducing the activity of a compound by changing its molecular structure. The steric interaction of the Ra and Rb groups is represented by green and yellow contours in Fig. 3(a) and Fig. 3(c), respectively. While the electrostatic interaction of the Ra and Rb groups is denoted by red and blue contours in Fig. 3(b) and Fig. 3(d), respectively. The green contours represent regions where the large or bulky substituent is favorable for the activity. The opposite is true for the yellow contours. The red isopleths indicate regions where the negative charged substituent is favorable for the activity and the blue isopleths indicate regions where an increase of the positive charged substituent enhances the activity.

As shown in Fig. 3(a), a green contour covering the cyclohexyl group links to R2 indicates the presence of a bulky group for good biological activity. This is in agreement with the experimental data: 38(-Et)>37(-Me), 41(-tBu)>40(-iPr). The molecule 42 has the highest activity because of the bulky substituent (-cyclohexyl) at R2-position. Besides, a green contour near the R2-position of the molecule 42 indicates the bulky substituent in this position may be favorable for the activity. For example, molecule 45(-OMe) has higher activitiy than molecule 45(-H). From Fig. 3(b), there is a large blue contour around cyclohexyl(R2), which suggest that the positive charged substituent at R2-position may favor the activity. This is in agreement with the experimental data: 39(-Pr), 40(-iPr), 41(-tBu), 42(-cyclohexyl). In Fig. 3(c) and Fig. 3(d), a yellow and a large blue contour at 4-position of the phenyl ring indicate that the small and positive charged substituent is preferred in this region. A red contour at 2, 3-position of the phenyl ring in Fig. 3(d), suggesting introduction of the electronegtive substituent into this position will be benefit for inhibitory activity. It can show the fact that the -Cl and -F have been introduced in this position.
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 [image: image5.png]


 [image: image6.png]


 [image: image7.png]



(a)                  (b)                 (c)                  (d) 
Fig. 3 3D contour of Topomer CoMFA model (a)steric field map of Ra; (b)electrostatic field map of
Ra; (c)steric field map of Rb; (d)electrostatic field map of Rb (Green and yellow contours represent steric favorable and unfavorable regions, respectively. Blue and red contours represent regions that favor electropositive and electronegative groups, respectively)
Molecular screening and molecular design
The results of molecular screening using Topomer Search technology are evaluated by the Topomer distance (TOPDIST) and the contribution values of R-groups(TOPCOMFA_R). Under normal circumstances, we give priority to TOPCOMFA_R in the same limit of the TOPDIST. In this study, 5000 Ra groups and 1000 Rb groups were screened from Drug-like in ZINC (2012) database. 1 Ra groups and 21 Rb groups with higher TOPCOMFA_R than that of template molecule were selected from 5000 Ra groups and 1000 Rb groups.
We employed the 1 Ra group and 21 Rb groups to alternately substitutes for the Ra and Rb of sample 42 and designed 21 new molecules. All molecules were optimized using the method applied to the training molecules and further predicted their activities using the Topomer CoMFA model obtained. The structures and predicted activities of 21 new compounds are displayed in Table 3. It can be seen from Table 3 that there are 10 new compounds with higher activity than that of the template molecule. And as revealed from Table 3, 10 new compounds have higher activities because of the introduction of the electronegtive substituent into 2, 3-position of the phenyl ring of Rb. Moreover, the bulky substituents in Ra make contributions for the activity of 10 new compounds. This is consistent with the analysis of the 3D contour of Topomer CoMFA model.

Table 3 Structures and predicted pIC50 of new designed molecules

	NO.
	structure
	Pred.
	NO.
	structure
	Pred.

	a*
	[image: image8.emf]N O

OH

N

N

O

O

F

O


	8.2652
	l*
	[image: image9.emf]N O

OH

O

F

F

O


	8.2761

	b
	[image: image10.emf]N O

OH

N

N

O

O


	8.0578
	m
	[image: image11.emf]N O

OH

N

N

O

O


	8.0433

	c*
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F

F

F

F


	8.6310
	n*
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F
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	8.6773

	d*
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F

F


	8.3685
	o
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OH
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N

N

N

O

O


	8.1185

	e*
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	8.3283
	p
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N

O

O N


	8.1452

	f*
	[image: image18.emf]N O

OH

Cl
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	8.3148
	q*
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	i*
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	8.1189
	
	
	


* compounds with higher activity than that of the template molecule
Conclusions
In the present work, 62 HIV-1 IN inhibitors were studied by computer-aided drug design processes, such as 3D-QSAR/Topomer CoMFA studies and Topomer Search technology. The built models are favored by internal and external predictions and the statistics are convincing and comparable. The models can not only be extrapolated to predict novel and more potent inhibitors, but the contour maps obtained from Topomer CoMFA analyses provide a useful insight for structure-based design for designing new chemical entities with high HIV-1 inhibitory activity. Moreover，new inhibitors were designed using Topomer Search. This study could serve as a basis for the development of HIV-1 IN inhibitors.
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Table Caption

Table 1 Structures and bioactivities of 62 integrase inhibitors
Table 2 The statistical results of Topomer CoMFA
Table 3 Structures and predicted pIC50 of new designed molecules
Figure Caption

Fig. 1 Cutting style of sample 42
Fig. 2 Linear regression between experimental and predicted pIC50 of 62 inhibitors
Fig. 3 3D contour of Topomer CoMFA model

(a)steric field map of Ra;  (b)electrostatic field map of Ra；

(c)steric field map of Rb;  (d)electrostatic field map of Rb
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