Benzene-1,3-diol derivatives as the inhibitors of butyrylcholinesterase: An emergent target of Alzheimer’s disease

Main Article Content

Yin Dongliang
https://orcid.org/0000-0002-0134-2278
Syeda Abidda Ejaz
https://orcid.org/0000-0002-8516-7234
Mubashir Aziz
https://orcid.org/0000-0001-8868-4459
Amna Saeed
https://orcid.org/0000-0002-8935-2242
Samina Ejaz
https://orcid.org/0000-0002-0800-6808
Muhammad Sajjad Bilal
https://orcid.org/0000-0002-9274-3236
Hafriz Mohammad Kashif Mahmoud
https://orcid.org/0000-0003-3802-4895
Syeda Tehmina Ejaz
https://orcid.org/0000-0001-7405-1757

Abstract

Molecular docking is a powerful and significant approach for the identification of lead molecules on the basis of virtual screening. With this a large number of compounds can be tested and based on the scoring function and ranking, the conclusion can be made that how the selected compounds can inhibit the targeted protein/receptor. By keeping in view, the importance of selective inhibitors of cholinesterase in the treatment of Alzheimer disease, here we are focused on the determination of the mechanism of binding interactions of few benzene-1,3-diol derivatives within the active site of both acetyl-cholinesterase (AChE) and butyrylcholinesterase (BChE). All the selective ligands were found to have a greater binding affinity with the BChE as compared to that of AChE, by an average value of ~−28.4 and ~−12.5 kJ/mol, respectively. The results suggested that the identified inhibitors can be used as the lead candidates for the development of novel inhibitors of the targeted enzymes against specific diseases, thus opening the possibility of new therapeutic strategies.

Article Details

How to Cite
[1]
Y. Dongliang, “Benzene-1,3-diol derivatives as the inhibitors of butyrylcholinesterase: An emergent target of Alzheimer’s disease”, J. Serb. Chem. Soc., Sep. 2021.
Section
Biochemistry & Biotechnology

References

K. H. Chen, E. A. Reese, H. W. Kim, S. I. Rapoport, J. S. Rao, J. Alzheimers Dis 26 (2011) 755 (https://dx.doi.org/10.3233/JAD-2011-110002)

N. R. Jabir, F. R. Khan, S. Tabrez, CNS Neurosci. Ther. 24 (2018) 753 (https://dx.doi.org/10.1111/cns.12971)

J. L. Yakel, Pflug Arch. Eur. J. Phys. 465 (2013) 441 (https://dx.doi.org/10.1007/s00424-012-1200-1)

B. H. Rasch, J. Born, S. Gais, J. Cogn. Neurosci. 18 (2006) 793 (https://dx.doi.org/10.1162/jocn.2006.18.5.793)

A. C. Halliday, S. A. Greenfield, Protein Pept. Lett. 19 (2012) 165 (https://dx.doi.org/10.2174/092986612799080149)

Z. Mokhtari, T. Baluchnejadmojarad, F. Nikbakht, M. Mansouri, M. Roghani, Biomed. Pharmacother. 87 (2017) 135 (https://doi.org/10.1016/j.biopha.2016.12.067)

K. L. Lanctôt, J. Amatniek, S. Ancoli-Israel, S. E. Arnold, C. Ballard, J. Cohen-Mansfield, Z. Ismail, C. Lyketsos, D. S. Miller, E. Musiek, R. S. Osorio, Alzheimers Dement (NY) 3 (2017) 440 (https://dx.doi.org/10.1016/j.trci.2017.07.001)

S. Karantzoulis, J. E. Galvin, Expert Rev. Neurother. 11 (2011) 1579 (https://dx.doi.org/10.1586/ern.11.155)

L. Mucke, Nature 461 (2009) 895 (https://dx.doi.org/10.1038/461895a)

K. Iman, M. U. Mirza, N. Mazhar, M. Vanmeert, I. Irshad, M. A. Kamal, CNS Neurol. Disord- Drug Targets 17 (2018) 54 (https://dx.doi.org/10.2174/1871 52731 7666180115162422)

F. Boller, K. Bick, C. Duyckaerts, Cortex 43 (2007) 565 (https://dx.doi.org/10.1016/S0010-9452(08)70251-X)

M. R. Zarrindast, F. Khakpai, Brain Res. 1710 (2019) 92 (https://doi.org/10.1016/j.brainres.2018.12.002)

N. H. Greig, T. Utsuki, D. K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q. S. Yu, J. Mamczarz, H. W. Holloway, T. Giordano, D. Chen, Proc. Natl. Acad. Sci. 102 (2005) 17213 (https://doi.org/10.1073/pnas.0508575102)

A. Saxena, A. M. Redman, X. Jiang, O. Lockridge, B. P. Doctor, Biochem. 36 (1997) 14642 (https://doi.org/10.1021/bi971425+)

Z. Yu, H. Ji, J. Shen, R. Kan, W. Zhao, J. Li, L. Ding, J. Liu, Food Funct. 11 (2020) 6643 (https://doi.org/10.1039/D0FO00971G)

Q. Li, H. Yang, Y. Chen, H. Sun, Eur. J. Med. Chem. 132 (2017) 294 (https://doi.org/10.1016/j.ejmech.2017.03.062)

F. L. Ansari, S. Kalsoom, Z. Ali, F. Jabeen, Med. Chem. Res. 21 (2012) 23 (https://doi.org/10.1007/s00044-011-9754-6)

Z. Ul-Haq, W. Khan, S. Kalsoom, F. L. Ansari, Theor. Biol. Medical Model 7 (2010) 22 (https://doi.org/10.1186/1742-4682-7-22)

R. Yan, Transl. Neurodegener. 5 (2016) 13 (https://doi.org/10.1186/s40035-016-0061-5)

R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. Garyantes, D. V. Green, R. P. Hertzberg, W. P. Janzen, J. W. Paslay, U. Schopfer, Nat. Rev. Drug Discov. 10 (2011) 188 (https://doi.org/10.1038/nrd3368)

X. Fradera, K. Babaoglu, Curr. Protoc. Chem. Biol. 9 (2017) 196 (https://doi.org/10.1002/cpch.27)

A. J. Banegas-Luna, J. P. Cerón-Carrasco, H. Pérez-Sánchez, Future Med. Chem. 10 (2018) 2641 (https://doi.org/ 10.4155/fmc-2018-0076)

E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 57 (2014) (https://doi.org/10.1021/jm501100b)

ACD/ChemSketch, version 12.01, Advanced Chemistry Development Inc, Toronto, ON, Canada, www.acdlabs.com, 2013

https://www.rcsb.org/search

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, J. Comput. Chem. 30 (2009) 2785 (https://doi.org/10.1002/jcc.21256)

G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, X. Chen, Nucleic. Acids. Res. 49 (2021) 5 (https://doi.org/10.1093/nar/gkab255)

D. S. Biovia. Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes. Version 17.2

www.pubchem.ncbi.nlm.nih.gov

MOE (The Molecular Operating Environment) Version 2010.10, Chemical Computing group Inc. (http://www.chemcomp.com).