Solid-liquid phase equilibria in the ternary systems H2O+ZnCl2+NaCl at temperatures of 298, 313 and 333 K Scientific paper

Main Article Content

Sevilay Demirci
https://orcid.org/0000-0003-4028-5699
Vedat Adıgüzel
https://orcid.org/0000-0001-7514-7144
Omer Sahin
https://orcid.org/0000-0003-4575-3762

Abstract

In this study, an economic separation method was suggested with the use of phase equilibria in order to ensure the recycling of ZnCl2 whose industrial waste amount is very high and to prevent it to form an environmental pollution. Sodium chloride-zinc chloride-water systems were examined with the isothermal method at temperatures of 298, 313 and 333 K. The analyses of the liquid and solid phases were used to determine the composition of the solid phase using the Schreinemakers graphic method. The solid-liquid phase equilibrium and viscosity data belonging to all ternary systems were identified and the solubility and viscosity changes with temperature were compared. The viscosity values were inversely proportional to the temperature as the amount of ZnCl2 in the solution increased. NaCl, 2NaCl ZnCl2 nH2O (n: 2, 0), ZnCl2 salts were observed at 298, 313, 333 K in the solid phases which are at equilibrium with the liquid phase at the invariant point.

Article Details

How to Cite
[1]
S. Demirci, V. Adıgüzel, and O. Sahin, “Solid-liquid phase equilibria in the ternary systems H2O+ZnCl2+NaCl at temperatures of 298, 313 and 333 K: Scientific paper”, J. Serb. Chem. Soc., Jul. 2021.
Section
Thermodynamics

References

H. Civelekoğlu, R. Tolun, N. Bulutçu, İnorganik teknolojiler, İTÜ Maden Fakültesi Ofset Atölyesi, İstanbul, Turkey, 1987, p. 80-103 (https://www.ituyayinlari.com.tr/kitap/34/inorganik-Teknolojiler) (in Turkish)

A. Olcay, Kimyasal Teknolojiler, Gazi Kitabevi, Ankara, Turkey, 1998, p. 10-38 (https://www.gazikitabevi.com.tr/urun/kimyasal-teknolojiler) (in Turkish)

Y. Mastai, Advances in Crystallization Processes, InTech, Rijeka, Croatia, 2012, p. 400-413 (https://dx.doi.org/10.5772/2672)

P. Patnaik, Handbook of Inorganic Chemicals, McGraw-Hill Professional, New York, 2002, p. 50-200 (https://dx.doi.org/10.5860/choice.40-6428)

A. R. Marder, Prog. Mater. Sci. 45(3) (2000) 191 (https://dx.doi.org/10.1016/S0079-6425(98)00006-1)

K. H. Lum, G. W. Stevens, S. E. Kentish, Hydrometallurgy 142 (2014) 108 (https://dx.doi.org/10.1016/j.hydromet.2013.11.016)

J. Carrillo-Abad, M. García-Gabaldón, V. Pérez-Herranz, Desalination 343 (2014) 38 (https://dx.doi.org/10.1016/j.desal.2013.11.040)

K. H. Lum, G. W. Stevens, J. M. Perera, S. E. Kentish, Hydrometallurgy 133 (2013) 64 (https://dx.doi.org/10.1016/j.hydromet.2012.12.001)

S. Bao, L. Tang, K. Li, P. Ning, J. Peng, H. Guo, T. Zhu, Y. Liu, J. Colloid Interface Sci. 462 (2016) 235 (https://dx.doi.org/10.1016/j.jcis.2015.10.011)

V. Alişoğlu, V. Adıguzel, C. R. Chim. 11 (2008) 938 (https://dx.doi.org/10.1016/j.crci.2007.12.001)

H. Erge, V. Adıguzel, V. Alişoğlu, Fluid Phase Equilib. 344 (2013) 13 (https://dx.doi.org/10.1016/j.fluid.2012.12.033)

V. Adıguzel, H. Erge, V. Alişoğlu, H. Necefoğlu, J. Chem. Thermodyn. 75 (2014) 35 (https://dx.doi.org/10.1016/j.jct.2014.04.014)

S. Demirci, V. Adıgüzel, Ö. Şahin, J. Chem. Eng. Data. 61 (2016) 2292 (https://dx.doi.org/10.1021/acs.jced.5b00988)

H. Schott, J. Chem. Eng. Data. 6 (1961) 324 (https://dx.doi.org/10.1021/je00103a002)

T. Gündüz, Kantitatif analiz laboratuvar kitabı, Gazi Büro Kitabevi, Ankara, Turkey, 2012, p. 280-282 (ISBN 9799757313457) (in Turkish)

X. Zhang, W. Zhang, D. Wang, H. Zhang, S. Sang, Russ. J. Inorg. Chem. 62 (2017) 995 (https://dx.doi.org/10.1134/S0036023617070245)

X. Zhang, S. Zhou, Y. Mu, J. Chem. Eng. Data. 64 (2019) 4330 (https://dx.doi.org/10.1021/acs.jced.9b00422)

X. Zhang, L. Zhao, W. Wang, S. Sang, J. Chem. Eng. Data. 65 (2020) 4475 (https://dx.doi.org/10.1021/acs.jced.0c00313)