Synthesis and characterization of Fe3O4/PEG-400/oxalic acid magnetic nanoparticles as a heterogeneous catalyst for the synthesis of pyrrolin-2-ones derivatives Scientific paper

Main Article Content

Seyran Esmailzadeh
Davood Setamdideh
https://orcid.org/0000-0003-4608-9322

Abstract

In this study, oxalic acid was successfully loaded onto Fe3O4/PEG-400 under ultrasonic irradiation and Fe3O4/PEG/oxalic acid as a new nanomagnetic catalyst was synthesized. The chemical structure of the catalyst was investigated by the FT-IR, XRD, EDX and SEM methods. The catalyst was used for the syn­thesis of 3-acyl-5-hydroxy-3-pyrrolin-2-one derivatives from the corresponding aldehydes, anilines and dimethyl acetylenedicarboxylate (DMAD) by a one-pot and three-component MCR reaction in the excellent yields (90–95 %) of products within 24 h at room temperature. Fourteen samples are available. The recovered catalyst could be satisfactorily used for a second and third run without regener­ation. This method has a green and eco-friendly profile. In addition, this research introduces an improved mechanism for these types of reaction. The chemical structures of new compounds was characterized by their FT-IR, 1H-NMR, 13C-NMR and mass spectra.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Esmailzadeh and D. Setamdideh, “Synthesis and characterization of Fe3O4/PEG-400/oxalic acid magnetic nanoparticles as a heterogeneous catalyst for the synthesis of pyrrolin-2-ones derivatives: Scientific paper”, J. Serb. Chem. Soc., vol. 86, no. 11, pp. 1039–1052, Nov. 2021.
Section
Inorganic Chemistry

References

S. Shylesh, V. Schunemann, W. R. Thiel, Angew. Chem. Int. Ed. 49 (2010) 3428 (https://doi.org/10.1002/ange.200905684)

Y. Zhu, L. P. Stubbs, F. Ho, R. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane, ChemCatChem 2 (2010) 365 (https://doi.org/10.1002/cctc.200900314)

H. Veisi, J. Gholami, H. Ueda, P. Mohammadi, M. Noroozi, J. Mol. Catal., A 365 (2015) 216 (https://doi.org/10.1016/j.molcata.2014.10.012)

R. B. Nasir-Baigand, R. S. Varma, Chem. Commun. 49 (2013) 752 (https://doi.org/10.1039/c2cc35663e)

B. Abbas Khakiani, K. Pourshamsian, H. Veisi, J. Appl. Organometal. Chem. 29 (2015) 259 (https://doi.org/10.1002/aoc.3282)

E. McCafferty, J. P. Wightman, Surf. Interface Anal. 26 (1998) 549 (https://doi.org/10.1002/(sici)1096-9918(199807)26:8<549::aid-sia396>3.0.co;2-q)

P. Riente, C. Mendozaa, M. A. Peric, J. Mater. Chem. 21 (2011) 7350 (https://doi.org/10.1039/c1jm10535c)

a) F. A. Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, H. Shahbazi-Alavi, RSC Adv. 6 (2016) 74802 (https://doi.org/10.1039/c6ra08458c) b) J. Safaei-Ghomi, F. Eshteghal, Ultra Sonochem. 38 (2017) 488 (https://doi.org/10.1016/j.ultsonch.2017.03.047) c) R. Ghorbani-Vaghei, N. Sarmast, J. Mahmoodi, J. Appl. Organometal. Chem. 31 (2017) e3681 (https://doi.org/10.1002/aoc.3681)

H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun, Nano Lett. 4 (2004) 187 (https://doi.org/10.1021/nl035004r)

R. Ghosh, L. Pradhan, Y. Priyabala, D. Meena, R. Tewari, A. Kumar, S. Sharma, G. Vatsa, B. Pandey, R. S. Ningthoujam, J. Mater. Chem. 21 (2011) 13388 (https://doi.org/10.1039/c1jm10092k)

D. Setamdideh, J. Serb. Chem. Soc. 81 (2016) 971 (https://doi.org/10.2298/jsc160202050s)

J. Sun, Q. Wu, E. Y. Xia, C. G. Yan, Eur. J. Org. Chem. (2011) 2981. (https://doi.org/10.1002/ejoc.201100008)

L. P. Dwoskin, L. Teng, S. T. Buxton, P. A. Crooks, J. Pharmacol. Exp. Ther. 288 (1999) 905 (https://jpet.aspetjournals.org/content/288/3/905.short)

P. Singh, V. Dimitriou, R. P. Mahajan, A. W. Crossley, Br. J. Anaesth. 71 (1993) 685 (https://doi.org/10.1093/bja/71.5.685)

P. N. Patsalos, Epilepsia 46 (2005) 140 (https://doi.org/10.1111/j.1528-1167.2005.00326.x)

S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka, Y. Sasaki, J. Antibiot. 44 (1991) 113 (https://doi.org/10.7164/antibiotics.44.113)

R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical, Angew. Chem. Int. Ed. 42 (2003) 355 (https://doi.org/10.1002/anie.200390115)

Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, H. Osada, Org. Lett. 4 (2002) 2845 (https://doi.org/10.1021/ol020104+)

M. S. F. Franco, G. A. Casagrande, C. Raminelli, S. Moura, M. Rossatto, F. H. Quina, C. M. P. Pereira, A. F. C. Flores, L. Pizzuti, Synth. Commun. 45 (2015) 692 (https://doi.org/10.1080/00397911.2014.978504)

M. Andana, S. I. Hashimoto, Tetrahedron Lett. 39 (1998) 79 (https://doi.org/10.1016/S0040-4039(97)10493-2)

D. R. Choi, K. Y. Lee, Y. S. Chung, J. E. Joo, Y. H. Kim, Ch. Y. Oh, Y. S. Lee, W. H. Ham, Arch. Pharm. Res. 28 (2005) 151 (https://doi.org/10.1007/bf02977706)

L. E. Burgess, A. I. Meyers, J. Org. Chem. 57 (1992) 1656 (https://doi.org/10.1021/jo00032a012)

L. E. Overman, T. P. Remarchuk, J. Am. Chem. Soc. 124 (2002) 12 (https://doi.org/10.1021/ja017198n)

V. Singh, R. Saxena, S. Batra, J. Org. Chem. 70 (2005) 353 (https://doi.org/10.1021/jo048411b)

R. Sarkar, C. Mukhopadhyay, Tetrahedron Lett. 54 (2013) 3706 (https://doi.org/10.1016/j.tetlet.2013.05.017)

A. M. Zonouz, I. Eskandari, B. Notash, Synth. Commun. 45 (2015) 2115 (https://doi.org/10.1080/00397911.2015.1065506)

H. Ahankar, A. Ramazani, K. Slepokura, T. Lis, S. W. Joo, Green Chem. 18 (2016) 3582 (https://doi.org/10.1039/c6gc00157b)

K. S. Marapala, N. Venkatesh, M. Swapna, P. R. Venkateswar, Int. J. ChemTech Res. 13 (2020) 227 (https://doi.org/10.20902/ijctr.2019.130128)

a) S. Pervaram, D. Ashok, C. Venkata Ramana Reddy, M. Sarasija, A. Ganesh, Chem. Data Coll. 29 (2020) 100508 (https://doi.org/10.1016/j.cdc.2020.100508) b) N. Ghaffari Khaligh, T. Mihankhah, M. Rafie Johan, S. J. J. Titinchi, Green Process Synth. 8 (2019) 373 (https://doi.org/10.1515/gps-2019-0004) c) N. Ghaffari Khaligh, T. Mihankhah, M. Rafie Johan, Synth. Commun. 49 (2019) 1334 (https://doi.org/10.1080/00397911.2019.1601225)

R. Ghorbani-Vaghei, N. Sarmast, J. Mahmoodi, J. Appl. Organomet. Chem. 31 (2017) e3681 (https://doi.org/10.1002/aoc.3681)

D. Setamdideh, J. Mex. Chem. Soc. 59 (2015) 191 (https://doi.org/10.29356/jmcs.v59i3.34)

Z. Zhang, J. Kong, J. Haz. Mater. 193 (2011) 325 (https://doi.org/10.1016/j.jhazmat.2011.07.033)

G. Nabiyouni, M. Julaee, D. Ghanbari, P. C. Aliabadi, and N. Safaie, J. Ind. Eng. Chem. 21 (2015) 599 (https://doi.org/10.1016/j.jiec.2014.03.025)

A. B. Savić, D. Cokesa, S. Lazarević, B. Jokić, D. Janaćković, R. Petrović, L. S. Živković, Powder Technol. 301(2016) 511 (https://doi.org/10.1016/j.powtec.2016.06.028)

D. V. Quy, N. M. Hieu, P. T. Tra, N. H. Nam, N. H. Hai, N. T. Son, P. T. Nghia, N. T. V. Anh, T. T. Hong, N. H. Luong, J. Nanomaterials, 2013, Article ID 603940 (http://doi.org/10.1155/2013/603940)

T. Koutzarova, S. Kolev, C. Ghelev, D. Paneva, I. Nedkov, Phys. Status Solidi, C 3 (2006) 1302 (https://doi.org/10.1002/pssc.200563115)

M. F. Tai, C. W. Lai, S. B. Abdul Hamid, J. Nanomater, 2016, Article ID 8612505 (https://doi.org/10.1155/2016/8612505)

K. S. Loh, Y. H. Lee, A. Musa, A. A. Salmah, I. Zamri, Sensors 8 (2008) 5775 (https://doi.org/10.3390/s8095775).