Beech sawdust based adsorbents for solid-phase extraction of pesticides and pharmaceuticals Scientific paper

Main Article Content

Marija Vukčević
https://orcid.org/0000-0003-0416-0741
Marina M. Maletić
https://orcid.org/0000-0002-4112-9316
Tatjana Đurkić
https://orcid.org/0000-0003-1996-6676
Biljana Babić
https://orcid.org/0000-0002-6269-7822
Ana Kalijadis
https://orcid.org/0000-0002-6897-4691

Abstract

Carbonaceous solid-phase extraction (SPE) sorbent, efficient in isolation and enrichment of multiclass pesticides and pharmaceuticals from water, was synthesized starting from cheap waste beech sawdust and using KOH as the activated agent. The first step in carbon material preparation was hydrothermal carbonization of the waste beech sawdust. Following hydrothermal treatment, the obtained material was activated, using different amounts of KOH. It was found that applied activation leads to changes in material structure, an increase in specific surface area, and a decrease in the number of surface oxygen groups compared to carbonized sample. SPE procedure of multiclass pesticides and pharmaceuticals from water using activated carbonized beech sawdust (AcSD) was optimized by selecting the appropriate elution solvents, the sample pH, and the sample volume to obtain the highest enrichment efficiency. The optimized SPE procedure was applied for water analysis using different AcSD samples as a sorbent for analyte preconcentration. Activated carbon sorbent, obtained with the highest amount of KOH, showed the highest recoveries regarding the most analytes, which were comparable with the recoveries obtained by commercial cartridges.

Article Details

How to Cite
[1]
M. Vukčević, M. M. Maletić, T. Đurkić, B. Babić, and A. Kalijadis, “Beech sawdust based adsorbents for solid-phase extraction of pesticides and pharmaceuticals: Scientific paper”, J. Serb. Chem. Soc., Jul. 2021.
Section
Physical Chemistry

References

K. S. Rajmohan, R. Chandrasekaran, S. Varjan, Indian J. Microbiol. 60 (2020) 125 (http://dx.doi.org/10.1007/s12088-019-00841-x)

T. Radović, S. Grujić, A. Petković, M. Dimkić, M. Laušević, Environ. Monit. Assess. 187 (2015) 4092 (http://dx.doi.org/10.1007/s10661-014-4092-z)

T. Reemtsmaa, L. Alder, U. Banasiak, J. Chromatogr. A 1271 (2013) 95 (http://dx.doi.org/10.1016/j.chroma.2012.11.023)

F. A. Swartjes, M. Van der Aa, Sci. Total Environ. 699 (2020) 134186 (https://doi.org/10.1016/j.scitotenv.2019.134186)

S. Teixeira, R. Gurke, H. Eckert, K. Kuhn, J. Fauler, G. Cuniberti, J. Environ. Chem. Eng. 4 (2016) 287 (http://dx.doi.org/10.1016/j.jece.2015.10.045)

S. Grujić, T. Vasiljević, M. Laušević, J. Chromatogr. A 1216 (2009) 4989 (https://doi.org/10.1016/j.chroma.2009.04.059)

Y. Li, J. Ding, L. Zhang, X. Liu, G. Wang, Sci. Total Environ. 696 (2019) 133991. (https://doi.org/10.1016/j.scitotenv.2019.133991)

B. Lalović, T. Đurkić, M. Vukčević, I. Janković-Častvan, A. Kalijadis, Z. Laušević, M. Laušević, Environ. Sci. Pollut. Res. 24 (2017) 20784 (http://dx.doi.org/10.1007/s11356-017-9748-0)

J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Chemosphere 93 (2013) 1268 (https://doi.org/10.1016/j.chemosphere.2013.07.059)

D. Mutavdžić Pavlović, S. Babić, A.J.M. Horvat, M. Kaštelan-Macan, Trend Anal. Chem. 26 (2007) 1062 (https://doi.org/10.1016/j.trac.2007.09.010)

F. Maya, C. Palomino Cabello, M. Ghani, G. Turnes Palomino, V. Cerdà, J. Sep. Sci. 4 (2018) 262 (https://doi.org/10.1002/jssc.201700836)

J. Płotka-Wasylka, N. Szczepanska, M.d.L. Guardia, J. Namiesnik, Trend. Anal. Chem. 77 (2016) 23 (http://dx.doi.org/10.1016/j.trac.2015.10.010)

A. H. El-Sheikh, J. A. Sweileh, Y. S. Al-Degs, A. A. Insisi, N. Al-Rabady, Talanta 74 (2008) 1675 (http://dx.doi.org/10.1016/j.talanta.2007.09.005)

M. Vukcevic, A. Kalijadis, M. Radisic, B. Pejic, M. Kostic, Z. Lausevic, M. Lausevic, Chem. Eng. J. 211-212 (2012) 224 (https://doi.org/10.1016/j.cej.2012.09.059)

A. Kalijadis, J. Ðorđević, T. Trtić-Petrović, M. Vukčević, M. Popović, V. Maksimović, Z. Rakočević, Z. Laušević, Carbon 95 (2015) 42 (http://dx.doi.org/10.1016/j.carbon.2015.08.016)

C. Falco, N. Baccile, M. M. Titirici, Green Chem. 13 (2011) 3273 (https://doi.org/10.1039/C1GC15742F)

Q. Wu, W. Li, J. Tan, Y. Wu, S. Liu, Chem. Eng. J. 266 (2015) 112 (https://doi.org/10.1016/j.cej.2014.12.089)

E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 (http://dx.doi.org/10.1021/ja01145a126)

K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara, Carbon 30 (1992) 1075 (http://dx.doi.org/10.1016/0008-6223(92)90139-N)

M. M. Vukčević, A. M. Kalijadis, T. M. Vasiljević, B. M. Babić, Z. V. Laušević, M. D. Laušević, Micropor. Mesopor. Mat. 214 (2015) 156 (https://doi.org/10.1016/j.micromeso.2015.05.012)

M. M. Titirici, M. Antonietti, N. Baccile, Green Chem. 10 (2008) 1204 (http://dx.doi.org/10.1039/b807009a)

S. Mihajlović, M. Vukčević, B. Pejić, A. Perić Grujić, M. Ristić, Environ. Sci. Pollut. Res. 27 (2020) 35769 (https://doi.org/10.1007/s11356-020-09811-z)

M. Maletić, M. Vukčević, A. Kalijadis, I. Janković-Častvan, A. Dapčević, Z. Laušević, M. Laušević, Arab. J. Chem. 12 (2019) 4388 (http://dx.doi.org/10.1016/j.arabjc.2016.06.020)

C. Cheng-Meng, Z. Qiang, Y. Mang-Guo, H. Chun-Hsien, Y. Yong-Gang, W. Mao-Zhang, Carbon 50 (2012) 3572 (http://dx.doi.org/10.1016/j.carbon.2012.03.029)

M. Sevilla, A.B. Fuertes, Carbon 47 (2009) 2281 (https://doi.org/10.1016/j.carbon.2009.04.026)

J. H. Zhou, Z. J. Sui, J. Zhu, P. Li, D. Chen, Y. C. Dai, W. k. Yuan, Carbon 45 (2007) 785 (https://doi.org/10.1016/j.carbon.2006.11.019)

S. C. Lyu, J. H. Han, K. W. Shin, J. H. Sok, Carbon 49 (2011) 1532 (https://doi.org/10.1016/j.carbon.2010.12.012)

G. S. Szymanski, Z. Karpinski, S. Biniak, A. Swiatkowski, Carbon 40 (2002) 2627 (https://doi.org/10.1016/S0008-6223(02)00188-4)

M. Vukčević, A. Kalijadis, B. Babić, Z. Laušević, M. Laušević, J. Serb. Chem. Soc. 78 (2013) 1617 (http://dx.doi.org/10.2298/JSC131227006V)

G. Peng, F. Gramm, C. Ludwig, F. Vogel, Catal. Sci. Technol. 5 (2015) 3658 (https://doi.org/10.1039/c5cy00352k)

S. Rincón Prat, C. Schneider, T. Kolb, Fuel 267 (2020) 117179 (https://doi.org/10.1016/j.fuel.2020.117179)

T. Ishii, T. Kyotani, Temperature Programmed Desorption, in Materials Science and Engineering of Carbon: Characterization, F. Kang, M. Inagaki Eds., Elsevier Inc., Oxford, 2016, p. 287 (https://doi.org/10.1016/B978-0-12-805256-3.00014-3)

H. H. Noh, C. J. Kim, H. Kwon, D. Kim, B. C. Moon, S. Baek, M.S. Oh, K.S. Kyung, PLoS. ONE (2020) (https://doi.org/10.1371/journal.pone.0235526)

J. A. Oliveira, L. J. P. Izeppi, R. F. Loose, D. K. Muenchen, O. D. Prestes, R. Zanella, Anal. Methods. 11 (2019) 2333 (https://doi.org/10.1039/c9ay00289h)

E. Rutkowska, B. Łozowicka, P. Kaczyński, Food Anal. Methods 11 (2018) 709 (https://doi.org/10.1007/s12161-017-1047-3)

S. Y. Wang, E. K. Fodjo, C. Kong, H. J. Yu, Water 12 (2020) 1238 (https://doi.org/10.3390/w12051238)

O. Guven Apul, T. Karanfil, Water Res. 68 (2015) 34 (http://dx.doi.org/10.1016/j.watres.2014.09.032).

Most read articles by the same author(s)