Characterization of landfill deposited sediment from dredging process during different maturation stages Scientific paper

Main Article Content

Miloš Dubovina
https://orcid.org/0000-0001-5475-800X
Nenad Grba
https://orcid.org/0000-0001-6706-4189
Dejan Krčmar
Jasmina Agbaba
https://orcid.org/0000-0002-9915-2885
Srđan Rončević
https://orcid.org/0000-0001-8698-4204
Đurđa Kerkez
https://orcid.org/0000-0003-0997-6635
Božo Dalmacija
https://orcid.org/0000-0003-0132-7446

Abstract

A long-term monitoring of deposited sediment in the environment is considered in order to examine the mechanism of incorporation of Cu and Cd into mineral fractions and to investigate their bioavailability during landfill maturation. Using the sequential extraction technique (Community Bureau of Reference, BCR), the dominant presence of Cu and Cd in the oxidation and residual fraction was determined, which suggests a low risk of bioavailability of these metals in the envi­ronment. The maturation of the deposited sediment indicates that the Cu and Cd content decreases over time in the exchangeable fraction and increases in the oxid­ation fraction. X-ray techniques XRF and EDS indicated a prevalence of silicates in the tested samples, which suggests the possibility of presence of silicate compounds that can bind metals and thus convert them into less mobile forms in the sediment. By imaging the samples with a scanning electron microscope SEM, the formation of heterogeneous structures over time was determined, which confirms the form­ation of new minerals and the potential pos­sibility of incorporating copper and cad­mium in them. In order to determine the mineral forms and dominant compounds in the examined sediment samples, X-ray diffraction analysis was applied, and the transformation pathways were explained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Dubovina, “Characterization of landfill deposited sediment from dredging process during different maturation stages: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 1, pp. 133–144, Jan. 2022.
Section
In Memoriam Issue Devoted to Prof. Petar Pfendt

References

R. L. Rudnick, S. Gao, in Treatise on Geo¬chemistry, Vol. 3: The Crust, R. L. Rudnick, Ed., Elsevier Science, 2004, pp. 1–64 (https://doi.org/10.1016/B0-08-043751-6/03016-4)

S. R. Taylor, S. M. McLennan, Rev. Geophys. 33 (1995) 241 (https://doi.org/10.1029/95RG00262)

I. Ahumada, A. Maricán, M. Retamal, C. Pedraza, L. Ascar, A. Carrasco, P. Richter, J. Braz. Chem. Soc. 21 (2010) 721 (https://doi.org/10.1590/S0103-50532010000400020)

G. Rauret, J.F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure, P. Quevauviller, J. Environ. Monit. 1 (1999) 57 (https://doi.org/10.1039/A807854H)

D. Rađenović, PhD Тhesis, University of Novi Sad, Novi Sad, 2020 (https://www.cris.uns.ac.rs/record.jsf?recordId=114883&source=NaRDuS&language=sr) (in Serbian)

N. Varga, PhD Тhesis, University of Novi Sad, Novi Sad, 2017 (https://nardus.mpn.gov.rs/bitstream/handle/123456789/8627/Disertacija11467.pdf?sequence=6&isAllowed=y) (in Serbian)

R. Zhang, F. Zeng, W. Liu, R.J. Zeng, H. Jiang, J. Environ. Manage. 53 (2014) 1119 (https://doi.org/10.1007/s00267-014-0268-0)

A. Sahuquillo, J. F. López-Sánchez, R. Rubio, G. Rauret, R. P. Thomas, C. M. Davidson, A. M. Ure, Anal. Chim. Acta 382 (1999) 317 (https://doi.org/10.1016/S0003-2670(98)00754-5)

K. Nemati, N. K. A. Bakar, M. R. Abas, E. Sobhanzadeh, J. Hazard. Mater. 192 (2011) 402 (https://doi.org/10.1016/j.jhazmat.2011.05.039)

D. Rađenović, Đ. Kerkez, D. Tomašević-Pilipović, M. Dubovina, N. Grba, D. Krčmar, B. Dalmacija, Sci. Total Environ. 684 (2019) 186 (https://doi.org/10.1016/j.scitotenv.2019.05.351)

A. Q. R. Baron, in Synchrotron Light Sources and Free-Electron Lasers, E. Jaeschke, S. Khan, J. Schneider, J. Hastings, Eds., Springer, Cham, 2016, pp. 1643–1713 (http://dx.doi.org/10.1007/978-3-319-14394-1_41)

Y. Juhua, C. Qiuwen, Z. Jianyun, Z. Jicheng, F. Chengxin, H. Liuming, S. Wenqing, Y. Wenyong, Z. Yinlong, Sci. Total Environ. 658 (2019) 501 (https://doi.org/10.1016/j.scitotenv.2018.12.226)

S. Pradhanang, JIST 19 (2014) 123 (https://doi.org/10.3126/jist.v19i2.13865)

B. A. Al-Mur, Oceanologia 62 (2020) 31 (https://doi.org/10.1016/j.oceano.2019.07.001)

A. V. Filqueiras, I. Lavilla, C. Bendicho, J. Environ. Monit. 4 (2002) 823 (https://doi.org/10.1039/B207574C)

D. Rađenović, Đ. Kerkez, D. Tomašević-Pilipović, M. Dubovina, N. Grba, D. Krčmar, B. Dalmacija, Sci. Total Environ. 684 (2019) 186 (https://doi.org/10.1016/j.scitotenv.2019.05.351)

A. M. Ziyath, P. Mahbub, A. Goonetilleke, M. O. Adebajo, S. Kokot, A. Oloyede, J. Water Resour. Prot. 3 (2011) 758 (https://doi.org/10.4236/jwarp.2011.310086)

Z. D. Mojović, PhD Thesis, University of Belgrade, Belgrade, 2009 (fedorabg.bg.ac.rs/fedora/get/o:7915/bdef:Content/get) (in Serbian)

R. Sánchez-Hernández, I. Padilla, S. López-Andrés, A. LópezDelgado, Desalination Water Treat. 126 (2018) 181 (https://doi.org/10.5004/dwt.2018.22816)

I. Obreht, C. Zeeden, P. Schulte, U. Hambach, E. Eckmeier, A. Timar-Gabor, F. Lehmkuhl, Aeolian Res. 18 (2015) 69 (https://doi.org/10.1016/j.aeolia.2015.06.004)

B. Lothenbach, E. Bernard, U. Mäder, Phys. Chem. Earth 99 (2017) 77 (https://doi.org/10.1016/j.pce.2017.02.006)

S. Salimkhani, K. Siahcheshm, A. Kadkhodaie, H. Salimkhani, Mater. Chem. Phys. 271 (2021) 124 (https://doi.org/10.1016/j.matchemphys.2021.124957)

Albite, https://www.britannica.com/science/albite (accessed August 10, 2021)

Muscovite, https://geology.com/minerals/muscovite.shtml (accessed August 10, 2021)

N. Grba, F. Neubauer, A. Šajnović, K. Stojanović, B. Jovančićević, J. Serb. Chem. Soc. 80 (2015) 827 (https://doi.org/10.2298/JSC140317047G)

M. Dubovina, D. Krčmar, N. Grba, M. A. Watson, D. Rađenović, D. Tomašević-

-Pilipović, B. Dalmacija, Environ. Pollut. 236 (2018) 773 (https://doi.org/10.1016/j.envpol.2018.02.014)

S. Gier, W. D. Johns, Appl. Clay Sci. 16 (2000) 289 (https://doi.org/10.1016/S0169-1317(00)00004-1).

Most read articles by the same author(s)