In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes Scientific paper

Main Article Content

Slađana Savić
https://orcid.org/0000-0002-1483-110X
Goran Roglić
https://orcid.org/0000-0002-6727-2604
Vyacheslav Avdin
https://orcid.org/0000-0003-2996-6346
Dmitry Zherebtsov
https://orcid.org/0000-0002-3368-9858
Dalibor Stanković
https://orcid.org/0000-0001-7465-1373
Dragan Manojlović
https://orcid.org/0000-0001-7465-1373

Abstract

Compounds used in the fashion industry effect the water bodies in the vicinity of textile factories, resulting in the visible coloration of surface water. Fe-doped graphite-based in house prepared electrodes were used in the Fenton-
-like degradation of Reactive Blue 52 (RB52). The electrodes consisting of high-density graphite in three granulation sizes and three levels of Fe content were characterized using scanning electron microscopy (SEM). The amount of Fe in the electrodes and H2O2 concentration in syn­thetic textile wastewater were optimized. Additionally, the size of graphite grains was varied to inves­tigate whether it effects the degradation rate. Under only 10 min of electro-Fen­ton degradation, a system with 10 mmol dm-3 of H2O2 and an electrode made of 7 % of Fe and 70 µm of granulation size of graphite, degraded over 75 % of RB52, and over 99 % after 40 min of treatment. The obtained results indicate that the proposed approach could be beneficial in the field of novel materials for environmental applic­ation and that in house prepared carbon could be an excellent replacement for commercially available supports.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
S. Savić, G. Roglić, V. Avdin, D. Zherebtsov, D. Stanković, and D. Manojlović, “In-house-prepared carbon-based Fe-doped catalysts for electro-Fenton degradation of azo dyes: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 1, pp. 57–67, Jan. 2022.
Section
In Memoriam Issue Devoted to Prof. Petar Pfendt

References

Electro-Fenton Process: New Trends and Scale-Up, M. Zhou, M. A. Oturan, I. Sirés, Eds., Springer, Singapore, 2018 (https://doi.org/10.1007/978-981-10-6406-7)

O. Ganzenko, C. Trellu, N. Oturan, D. Huguenot, Y. Péchaud, E. D. van Hullebusch, M. A. Oturan, Chemosphere 253 (2020) 126659 (https://doi.org/10.1016/j.chemosphere.2020.126659)

E. Brillas, I. Sirés, M. A. Oturan, Chem. Rev. 109 (2009) 6570 (https://doi.org/10.1021/cr900136g)

K. V. Plakas, A. J. Karabelas, in: Electro-Fenton Process New Trends Scale-Up, M. Zhou, M. A. Oturan, I. Sirés, Eds., Springer, Singapore, 2018, pp. 343–378 (https://doi.org/10.1007/698_2017_52)

C. K. Duesterberg, S. E. Mylon, T. D. Waite, Environ. Sci. Technol. 42 (2008) 8522 (https://doi.org/10.1021/es801720d)

F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, Appl. Catal., B 202 (2017) 217 (https://doi.org/10.1016/j.apcatb.2016.08.037)

K. M. Nair, V. Kumaravel, S. C. Pillai, Chemosphere 269 (2021) 129325 (https://doi.org/10.1016/j.chemosphere.2020.129325)

S. O. Ganiyu, M. Zhou, C. A. Martínez-Huitle, Appl. Catal., B 235 (2018) 103 (https://doi.org/10.1016/j.apcatb.2018.04.044)

R. N. Goyal, S. Bishnoi, Bioelectrochemistry 79 (2010) 234 (https://doi.org/10.1016/j.bioelechem.2010.06.004)

B. Vahid, A. Khataee, Electrochim. Acta 88 (2013) 614 (https://doi.org/10.1016/j.electacta.2012.10.069)

D. M. Stanković, A. Kukuruzar, S. Savić, M. Ognjanović, I. M. Janković-Častvan, G. Roglić, B. Antić, D. Manojlović, B. Dojčinović, Mater. Chem. Phys. 273 (2021) 125154 (https://doi.org/10.1016/j.matchemphys.2021.125154)

D. M. Stanković, M. Ognjanović, M. Fabián, V. V. Avdin, D. D. Manojlović, S. Vranješ. Đurić, B. B. Petković, Surf. Interfaces 25 (2021) 101211 (https://doi.org/10.1016/j.surfin.2021.101211)

P. Kariyajjanavar, N. Jogttappa, Y. A. Nayaka, J. Hazard. Mater. 190 (2011) 952 (https://doi.org/10.1016/j.jhazmat.2011.04.032)

W. Xu, S. Lai, S. C. Pillai, W. Chu, Y. Hu, X. Jiang, M. Fu, X. Wu, F. Li, H. Wang, J. Colloid Interface Sci. 574 (2020) 110 (https://doi.org/10.1016/j.jcis.2020.04.038)

G. Ren, M. Zhou, M. Liu, L. Ma, H. Yang, Chem. Eng. J. 298 (2016) 55 (https://doi.org/10.1016/j.cej.2016.04.011)

S. Bouafia-Chergui, N. Oturan, H. Khalaf, M. A. Oturan, J. Environ. Sci. Health, A 45 (2010) 622 (https://doi.org/10.1080/10934521003595746)

D. Marković, S. Milovanović, M. Radoičić, Ž. Radovanović, I. Zizović, Z. Šaponjić, M. Radetić, J. Serb. Chem. Soc. 83 (2018) 1379 (https://doi.org/10.2298/JSC180913089M)

M. Singh, D. Vaya, R. Kumar, B. Das, J. Serbian Chem. Soc. 86 (2021) 327 (https://doi.org/10.2298/JSC200711074S)

D. Manojlović, K. Lelek, G. Roglić, D. Zherebtsov, V. Avdin, K. Buskina, C. Sakthidharan, S. Sapozhnikov, M. Samodurova, R. Zakirov, D. M. Stanković, Int. J. Environ. Sci. Technol. 17 (2020) 2455 (https://doi.org/10.1007/s13762-020-02654-8)

B. B. Petković, M. Ognjanović, B. Antić, V. V. Avdin, D. D. Manojlović, S. V. Đurić, D. M. Stanković, Electroanalysis 33 (2021) 446 (https://doi.org/10.1002/elan.202060290)

D. Gümüş, F. Akbal, Process Saf. Environ. Prot. 103 (2016) 252 (https://doi.org/10.1016/j.psep.2016.07.008).

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.