Design and implementation of low-cost portable potentiostat based on WeChat Scientific paper

Main Article Content

Xiaoyan Shen
https://orcid.org/0000-0003-4551-186X
Ziqiang Li
https://orcid.org/0000-0002-4780-5442
Lei Ma
https://orcid.org/0000-0002-3537-2213
Xionghuan Bian
Xingsi Cheng
https://orcid.org/0000-0002-0563-7524
Xiongjie Lou
https://orcid.org/0000-0003-2237-1075

Abstract

The potentiostat is critical in the development of electrochemical sys­tems; however, its cumbersome detection and high cost considerably limit its large-scale application. To provide an affordable alternative to developing count­ries and resource-constrained areas, this study designs an electrochemical det­ection system based on smartphones, which uses Bluetooth Low Energy to con­vert open-source potentiostat data based on PSoC-5LP. The WeChat applic­ation on the smartphone provides an interface for entering experimental para­meters and visualizing the results in real time. The smartphone-based elec­tro­chemical det­ection system has a simple design and reduces the size (10×3×0.3 cm3) and the cost of the hardware ($ 18). The system performs the most com­monly used cyclic voltammetry for electrochemical detection, with results that are comparable to those obtained using a commercial potentiostat and an error rate of 1.3 %. In the classical teaching experiment of electro­chemical determin­ation of ascorbic acid in orange juice samples, the measured value of the sys­tem is 0.367±0.012 mg/mL, compared with the standard refer­ence value of 0.37 mg/mL, which is obviously a convincing value. Therefore, this system is a low-cost, reliable alter­native to a potentiostat for research, edu­cation or product integration develop­ment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
X. . Shen, Z. Li, L. Ma, X. . Bian, X. . Cheng, and X. . Lou, “Design and implementation of low-cost portable potentiostat based on WeChat: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 5, pp. 603–614, Mar. 2022.
Section
Electrochemistry

References

C. Lefrou, P. Fabry, J. C. Poignet, Electrochemistry: the basics, with examples, Springer, Berlin, 2012, pp. 1–353 (https://doi.org/10.1007/978-3-642-30250-3)

P. Redon, A. Shahzad, T. Iqbal, W. Wijns, Bioengineering 8 (2021) 1 (https://doi.org/10.3390/bioengineering8020028)

P. Mohankumar, J. Ajayan, T. Mohanraj, R. Yasodharan, Measurement 167 (2021) 108293 (https://doi.org/10.1016/j.measurement.2020.108293)

S. Kurbanoglu, C. Erkmen, B. Uslu, TrAC Trends Anal. Chem. 124 (2020) 115809 (https://doi.org/10.1016/j.trac.2020.115809)

S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón, Sensors (Switzerland) 20 (2020) 1 (https://doi.org/10.3390/s20185125)

T. Dobbelaere, P. M. Vereecken, C. Detavernier, HardwareX 2 (2017) 34 (https://doi.org/10.1016/j.ohx.2017.08.001)

D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, Cengage Learning, Boston, MA, 2017 (ISBN 10 1-305-57721-3)

Portable potentiostats, Metrohm, http://www.metrohm-autolab.com/Products/Echem/PortablePot/PortablePotentiostats.html (accessed on Jan 4, 2021)

Portable potentiostat, BioLogic Science Instruments, http://www.bio-logic.net/en/products/ /potentiostat-galvanostat-eis/pg581-portable-potentiostatgalvanostat/ (accessed on Jan 4, 2021)

J. Wiencek, J. Nichols, Expert Rev. Mol. Diagn. 16 (2016) 415 (https://doi.org/10.1586/14737159.2016.1141678)

A. Warsinke, Anal. Bioanal. Chem. 393 (2009) 1393 (https://doi.org/10.1007/s00216-008-2572-0)

J. H. Nichols, Contemp. Pract. Clin. Chem.19 (2020) 323 (https://doi.org/10.1016/B978-0-12-815499-1.00019-3)

Smartphone Users Worldwide 2016–2021, Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on Jan 10, 2021)

Number of smartphone users worldwide from 2014 to 2020, Statista, https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on Jan 10, 2021)

D. Quesada-González, A. Merkoçi, Biosens. Bioelectron. 92 (2017) 549 (https://doi.org/10.1016/j.bios.2016.10.062)

D. Zhang, Q. Liu, Biosens. Bioelectron. 75 (2016) 273 (https://doi.org/10.1016/j.bios.2015.08.037)

S. Dutta, TrAC, Trends Anal. Chem. 110 (2019) 393 (https://doi.org/10.1016/j.trac.2018.11.014)

N. Seddaoui, A. Amine, Talanta 30 (2021) 122346 (https://doi.org/10.1016/j.talanta.2021.122346)

A. Ainla, M. P. S. Mousavi, M.-N. Tsaloglou, J. Redston, J. G. Bell, M. T. Fernández-

-Abedul, G. M. Whitesides, Anal. Chem. 90(10 (2018) 6240 (https://doi.org/10.1021/acs.analchem.8b00850)

J. Li, P. B. Lillehoj, ACS Sens. 6 (2021) 1270 (https://pubs.acs.org/doi/10.1021/acssensors.0c02561)

V. Caratelli, A. Ciampaglia, J. Guiducci, G. Sancesario, D. Moscone, F. Arduini, Biosens. Bioelectron. 165 (2020) 112411 (https://doi.org/10.1016/j.bios.2020.112411)

D. Ji, L. Liu, S. Li, C. Chen, Y. Lu, J. Wu, Q. Liu, Biosens. Bioelectron. 98 (2017) 449 (https://doi.org/10.1016/j.bios.2017.07.027)

J. Monge, O. Postolache, A. Trandabat and S. Macovei, in 2020 International Conference and Exposition on Electrical And Power Engineering (EPE), 2020, pp. 695–698 (https://doi.org/10.1109/EPE50722.2020.9305567)

Android vs iOS Development: Pros and Cons of Each Platform, https://scand.com/company/blog/android-vs-ios-development (accessed on Jan 20, 2021)

32-bit Arm Cortex-M3 PSoC 5LP, https://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp (accessed on March 5, 2021)

Operational Amplifier (Opamp), https://www.cypress.com/documentation/component-datasheets/operational-amplifier-opamp (accessed on March 5, 2021)

Trans-Impedance Amplifier (TIA), https://www.cypress.com/documentation/component-datasheets/trans-impedance-amplifier-tia (accessed on March 5, 2021)

A. J. Bard, L. R. Faulkner, Fundamentals and applications: Electrochemical methods, John Wiley & Sons, Hoboken, NJ, 2001, pp. 580–632 (ISBN 978-0-471-04372-0)

M. D. M. Dryden, A. R. Wheeler, PloS One 10 (2015) e0140349 (https://doi.org/10.1371/journal.pone.0140349)

A. Fick, Ann. Phys. 170 (1855) 59 (https://doi.org/10.1002/andp.18551700105)

N. S. Neghmouche, T. Lanez, Int. Lett. Chem. Phys. Astron. (2013) 37 (https://doi.org/10.18052/www.scippress.com/ILCPA.9.37).

D. King, J. Friend, J. Kariuki, J. Chem. Educ. 87 (2010) 507 (http://pubs.acs.org/jchemeduc).