New copper(II) cyclam complexes with aminocarboxylate co-ligands: Synthesis, characterization, and in vitro antiproliferative and antibacterial studies Scientific paper

Main Article Content

Branka Dražić
https://orcid.org/0000-0003-1723-3268
Mirjana Antonijević-Nikolić
https://orcid.org/0000-0003-4277-9780
Milena Martinović-Cincović
https://orcid.org/0000-0001-6197-1511
Vukosava Živković-Radovanović
Banka Borović
https://orcid.org/0000-0003-0371-0991
Slađana Tanasković
https://orcid.org/0000-0002-3486-2800

Abstract

Two new cationic Cu(II) complexes of cyclam (1,4,8,11-tetra­aza­cyclo­tetradecane) and aminocarboxylate coligands glycine or alanine have been synthesized. The complexes were characterized by elemental analysis (C, H and N), molar electrical conductivity, magnetic susceptibility measure­ment at room temperature, spectral methods (UV/Vis and Fourier transform infrared), as well as by thermogravimetric (TG) and differential thermal analysis (DTA). The ana­lytical data of the complexes show the formation of mononuclear com­plexes with general formula [Cu(L)cyc](ClO4)2×nH2O, A) L = glycine, = 1.5 and B) L = alanine, n = 2.5. The tetradentate ligand cyclam was coordinated to metals through four N donors. The spectroscopic data suggested that the amino car­boxylate ligands coordinated via their carboxylate ion moieties. The six-coor­dinate octahedral geometry around Cu(II) in both complexes was pre­sumed. TG-DTA analysis indicated that complex B decomposed exothermally in a single step in the range of 310–400 °C. The cytotoxic activity of Cu(II) complexes and the starting ligands were tested against human cervix adenocar­cinoma cell line (HeLa), human melanoma (FemX) and human colon carci­noma (LS174). The IC50 values for the Cu(II) complexes were from 48.35–82.25 μM. Both complexes were tested for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and the yeast Candida albicans.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
B. Dražić, M. . Antonijević-Nikolić, M. Martinović-Cincović, V. . Živković-Radovanović, B. Borović, and S. Tanasković, “New copper(II) cyclam complexes with aminocarboxylate co-ligands: Synthesis, characterization, and in vitro antiproliferative and antibacterial studies: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 4, pp. 451–464, Mar. 2022.
Section
Inorganic Chemistry

Funding data

References

L. Radovanović, J. Rogan, D. Poleti, M. Milutinovićc, M. V. Rodić, Polyhedron 112 (2016) 18 (https://doi.org/10.1016/j.poly.2016.03.054)

L. Vera-Estrada, J. Uribe-Godınez, O. Jimenez-Sandoval, RSC Adv. 10 (2020) 22586 (https://doi.org/10.1039/d0ra02904a)

A. Ross, J-H Choi, T. M. Hunter, C. Pannecouque, S. A Moggach, S. Parsons, E. De Clercq, P. J. Sadler, Dalton Trans. 41 (2012) 6408 (https://doi.org/10.1039/c2dt30140g)

X. Liang, P.J. Sadler, Chem. Soc. Rev. 33 (2004) 246 (https://doi.org/10.1039/B313659K)

E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 114 (2014) 3659 (https://doi.org/10.1021/cr400327t)

E. Faggi, R. Gavara, M. Bolte, L. Fajarí, L. Juliá, L.Rodríguez, I. Alfonso, Dalton Trans. 44 (2015) 12700 (https://doi.org/10.1039/C5DT01496D)

Z. Mardani, K. Moeini, M. Darroudi, C. Carpenter-Warren, A. M. Z. Slawin, J. D. Woollins, J Coord Chem. 72 (2019) 3030 (https://doi.org/10.1080/00958972.2019.1684477 )

K. Babić-Samardžija, N. Hackerman, S. P. Sovilj, V. M. Jovanović, J. Solid State Electrochem. 12 (2008) 155 (http://doi.org/10.1007/s10008-007-0375-4)

W. Sibert, A. H. Cory, J. G. Cory, J. Chem. Soc., Chem. Commun. 2 (2002) 154 (https://doi.org/10.1039/B107899M)

S. J. Paisey, P. J. Sadler, Chem. Commun. 3 (2004) 306 (https://doi.org/10.1039/B312752B

X. Liang, J. A. Parkinson, M. Weishaulp, R. O. Gould, S. J. Paisey, H. Park, T. M. Hunter, C. A. Blindauer, S. Parsons, P. J. Sadler, J. Am. Chem. Soc. 124 (2002) 9105 (https://doi.org/10.1021/ja0260723)

M. Kubeil, K. Zarschler, J. Pietzsch, W. Kraus, P. Comba, H. Stephan, Eur. J. Inorg. Chem. 24 (2015) 4013 (https://doi.org/10.1002/ejic.201500510)

E. Konig, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin, 1966, p. 24 (ISBN: 978-3-540-03593-0)

T. Mosmann, J. Immunol. Methods 65 (1983) 55 (http://dx.doi.org/10.1016/0022-1759(83)90303-4)

M. Ohno, T. Abe, J. Immunol. Methods 145 (1991) 199 (https://www.ncbi.nlm.nih.gov/pubmed/1765652)

W. J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

N. Abdullah, Z. Arifin, E. R. T. Tiekink, N. Sharmin, N. S. A. Tajidi, S. A. M. Hussin, J. Coord. Chem. 69 (2016) 862 (http://dx.doi.org/10.1080/00958972.2016.1147032)

Z. H. Chohan, M. Arif, A. M. Akhtar, C. T. Supuran, Bioinorg. Chem. Appl. (2006) 83131 (https://doi.org/10.1155/BCA/2006/83131)

A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984, p. 554 (ISBN 0-444-42389-3)

S. S. Massoud, F. A. Mautner, R. Vicente, H. N. Sweeney, Inorg. Chim. Acta. 359 (2006) 1489 (https://doi.org/10.1016/j.ica.2005.10.047)

B. J. Hathaway, Copper. Coord. Chem. Rev. 52 (1983) 87 (https://doi.org/10.1016/0010-8545(83)85019-X)

G. G. Mohamed, C. M. Sharaby, Spectrochim. Acta, A 66 (2007) 949 (https://doi.org/10.1016/j.saa.2006.04.033)

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., Willey and Sons, New York, 1997, pp. 23–26, 59–62, 83, 271 (ISSN: 0260-3594)

G. B. Deacon, R. J. Philips, Coord. Chem. Rev. 33 (1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)

D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The handbook of infrared and raman characteristic frequencies of organic molecules, Academic Press, San Diego, CA, 1991 (ISBN: 9780080571164)

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons Inc., Hoboken, NJ, 2009 (ISBN 978-0-471-74493-1)

L. Tripathi, P. Kumar, and A. K. Singhai, Indian J. Cancer 44 (2007) 62 (https://doi.org/10.4103/0019-509X.35813)

H. Elo, Z. Naturforsch. C 59 (2004) 609 (https://doi.org/10.1515/znc-2004-7-828)

D. Jayaraju, A. K. Kondapi, Curr. Sci. 81 (2001) 787 (http://www.jstor.org/stable/24106398)

S. S. Hindo, M. Frezza, D. Tomco, M. J. Heeg, L. Hryhorczuk, B. R. McGarvey, Q. P. Dou, C. N. Verani, Eur. J. Med. Chem. 44 (2009) 4353 (https://doi.org/10.1016/J.Ejmech.2009.05.019)

I. Iakovidis, I. Delimaris, S. M. Piperakis, Mol. Biol. Int. 2011 (2011) 594 (https://doi.org/10.4061/2011/594529)

E. Tacconelli, N. Magrini, Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics, World Health Organization publications, Geneva, 2017, p. 1 (https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf)

M. N. Patel, P. B. Pansuriya, P. A. Parmar, D. S. Gandhi, Pharm. Chem. J. 42 (2008) 687 (https://dx.doi.org/10.1007/s11094-009-0214-2)

C. Dendrinou-Samara, G. Psomas, C. P. Raptopoulou, D. P. Kessissoglou, J. Inorg. Biochem. 83 (2001) 7 (https://doi.com/ 10.1016/s0162-0134(00)00131-8)

S. K. Sengupta, O. P. Poudey, B. K. Srivastava, V. K. Sharma, Transition Met. Chem. 23 (1998) 349 (https://doi.org/10.1023/A:1006986131435).