New copper(II) cyclam complexes with aminocarboxylate co-ligands: Synthesis, characterization, and in vitro antiproliferative and antibacterial studies Scientific paper
Main Article Content
Abstract
Two new cationic Cu(II) complexes of cyclam (1,4,8,11-tetraazacyclotetradecane) and aminocarboxylate coligands glycine or alanine have been synthesized. The complexes were characterized by elemental analysis (C, H and N), molar electrical conductivity, magnetic susceptibility measurement at room temperature, spectral methods (UV/Vis and Fourier transform infrared), as well as by thermogravimetric (TG) and differential thermal analysis (DTA). The analytical data of the complexes show the formation of mononuclear complexes with general formula [Cu(L)cyc](ClO4)2×nH2O, A) L = glycine, n = 1.5 and B) L = alanine, n = 2.5. The tetradentate ligand cyclam was coordinated to metals through four N donors. The spectroscopic data suggested that the amino carboxylate ligands coordinated via their carboxylate ion moieties. The six-coordinate octahedral geometry around Cu(II) in both complexes was presumed. TG-DTA analysis indicated that complex B decomposed exothermally in a single step in the range of 310–400 °C. The cytotoxic activity of Cu(II) complexes and the starting ligands were tested against human cervix adenocarcinoma cell line (HeLa), human melanoma (FemX) and human colon carcinoma (LS174). The IC50 values for the Cu(II) complexes were from 48.35–82.25 μM. Both complexes were tested for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and the yeast Candida albicans.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-68/2022-14/200161
References
L. Radovanović, J. Rogan, D. Poleti, M. Milutinovićc, M. V. Rodić, Polyhedron 112 (2016) 18 (https://doi.org/10.1016/j.poly.2016.03.054)
L. Vera-Estrada, J. Uribe-Godınez, O. Jimenez-Sandoval, RSC Adv. 10 (2020) 22586 (https://doi.org/10.1039/d0ra02904a)
A. Ross, J-H Choi, T. M. Hunter, C. Pannecouque, S. A Moggach, S. Parsons, E. De Clercq, P. J. Sadler, Dalton Trans. 41 (2012) 6408 (https://doi.org/10.1039/c2dt30140g)
X. Liang, P.J. Sadler, Chem. Soc. Rev. 33 (2004) 246 (https://doi.org/10.1039/B313659K)
E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, J. Cirera, M. Qayyum, M. T. Kieber-Emmons, C. H. Kjaergaard, R. G. Hadt, L. Tian, Chem. Rev. 114 (2014) 3659 (https://doi.org/10.1021/cr400327t)
E. Faggi, R. Gavara, M. Bolte, L. Fajarí, L. Juliá, L.Rodríguez, I. Alfonso, Dalton Trans. 44 (2015) 12700 (https://doi.org/10.1039/C5DT01496D)
Z. Mardani, K. Moeini, M. Darroudi, C. Carpenter-Warren, A. M. Z. Slawin, J. D. Woollins, J Coord Chem. 72 (2019) 3030 (https://doi.org/10.1080/00958972.2019.1684477 )
K. Babić-Samardžija, N. Hackerman, S. P. Sovilj, V. M. Jovanović, J. Solid State Electrochem. 12 (2008) 155 (http://doi.org/10.1007/s10008-007-0375-4)
W. Sibert, A. H. Cory, J. G. Cory, J. Chem. Soc., Chem. Commun. 2 (2002) 154 (https://doi.org/10.1039/B107899M)
S. J. Paisey, P. J. Sadler, Chem. Commun. 3 (2004) 306 (https://doi.org/10.1039/B312752B
X. Liang, J. A. Parkinson, M. Weishaulp, R. O. Gould, S. J. Paisey, H. Park, T. M. Hunter, C. A. Blindauer, S. Parsons, P. J. Sadler, J. Am. Chem. Soc. 124 (2002) 9105 (https://doi.org/10.1021/ja0260723)
M. Kubeil, K. Zarschler, J. Pietzsch, W. Kraus, P. Comba, H. Stephan, Eur. J. Inorg. Chem. 24 (2015) 4013 (https://doi.org/10.1002/ejic.201500510)
E. Konig, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, Springer-Verlag, Berlin, 1966, p. 24 (ISBN: 978-3-540-03593-0)
T. Mosmann, J. Immunol. Methods 65 (1983) 55 (http://dx.doi.org/10.1016/0022-1759(83)90303-4)
M. Ohno, T. Abe, J. Immunol. Methods 145 (1991) 199 (https://www.ncbi.nlm.nih.gov/pubmed/1765652)
W. J. Geary, Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)
N. Abdullah, Z. Arifin, E. R. T. Tiekink, N. Sharmin, N. S. A. Tajidi, S. A. M. Hussin, J. Coord. Chem. 69 (2016) 862 (http://dx.doi.org/10.1080/00958972.2016.1147032)
Z. H. Chohan, M. Arif, A. M. Akhtar, C. T. Supuran, Bioinorg. Chem. Appl. (2006) 83131 (https://doi.org/10.1155/BCA/2006/83131)
A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd ed., Elsevier, Amsterdam, 1984, p. 554 (ISBN 0-444-42389-3)
S. S. Massoud, F. A. Mautner, R. Vicente, H. N. Sweeney, Inorg. Chim. Acta. 359 (2006) 1489 (https://doi.org/10.1016/j.ica.2005.10.047)
B. J. Hathaway, Copper. Coord. Chem. Rev. 52 (1983) 87 (https://doi.org/10.1016/0010-8545(83)85019-X)
G. G. Mohamed, C. M. Sharaby, Spectrochim. Acta, A 66 (2007) 949 (https://doi.org/10.1016/j.saa.2006.04.033)
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., Willey and Sons, New York, 1997, pp. 23–26, 59–62, 83, 271 (ISSN: 0260-3594)
G. B. Deacon, R. J. Philips, Coord. Chem. Rev. 33 (1980) 227 (https://doi.org/10.1016/S0010-8545(00)80455-5)
D. Lin-Vien, N. B. Colthup, W. G. Fateley, J. G. Grasselli, The handbook of infrared and raman characteristic frequencies of organic molecules, Academic Press, San Diego, CA, 1991 (ISBN: 9780080571164)
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, John Wiley & Sons Inc., Hoboken, NJ, 2009 (ISBN 978-0-471-74493-1)
L. Tripathi, P. Kumar, and A. K. Singhai, Indian J. Cancer 44 (2007) 62 (https://doi.org/10.4103/0019-509X.35813)
H. Elo, Z. Naturforsch. C 59 (2004) 609 (https://doi.org/10.1515/znc-2004-7-828)
D. Jayaraju, A. K. Kondapi, Curr. Sci. 81 (2001) 787 (http://www.jstor.org/stable/24106398)
S. S. Hindo, M. Frezza, D. Tomco, M. J. Heeg, L. Hryhorczuk, B. R. McGarvey, Q. P. Dou, C. N. Verani, Eur. J. Med. Chem. 44 (2009) 4353 (https://doi.org/10.1016/J.Ejmech.2009.05.019)
I. Iakovidis, I. Delimaris, S. M. Piperakis, Mol. Biol. Int. 2011 (2011) 594 (https://doi.org/10.4061/2011/594529)
E. Tacconelli, N. Magrini, Global Priority List of Antibiotic Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics, World Health Organization publications, Geneva, 2017, p. 1 (https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf)
M. N. Patel, P. B. Pansuriya, P. A. Parmar, D. S. Gandhi, Pharm. Chem. J. 42 (2008) 687 (https://dx.doi.org/10.1007/s11094-009-0214-2)
C. Dendrinou-Samara, G. Psomas, C. P. Raptopoulou, D. P. Kessissoglou, J. Inorg. Biochem. 83 (2001) 7 (https://doi.com/ 10.1016/s0162-0134(00)00131-8)
S. K. Sengupta, O. P. Poudey, B. K. Srivastava, V. K. Sharma, Transition Met. Chem. 23 (1998) 349 (https://doi.org/10.1023/A:1006986131435).