Synthesis of activated carbons from water hyacinth biomass and its application as adsorbents in water pollution control Scientific paper

Main Article Content

Ahmad Hakky Mohammad
https://orcid.org/0000-0001-5714-5620
Mirjana Kijevčanin
https://orcid.org/0000-0001-7126-3965

Abstract

The water hyacinth biomass was used for the synthesis of activated carbons in a process of chemical activation with ZnCl2, followed by controlled pyrolysis. The applied impregnation weight ratios ZnCl2 and dry hyacinth bio­mass were in the range of 0.5–3.5. The carbonization was conducted at four different temperatures (400–700 °C) under an inert atmosphere. The highest yield of activated carbon was obtained for the impregnation ratio of 0.5 and carbon­ization temperature of 400 °C. The samples were characterized using elemental analysis, adsorption–desorption isotherms of nitrogen and SEM ana­lysis. The activated carbon obtained with an impregnation ratio 2.0 and carbon­ization temperature of 500 °C (2.0AC500) showed the highest values of specific surface area and total pore volume of 1317 m2 g-1 and 0.697 cm3 g-1, respect­ively. The adsorption of glyphosate, pesticide with a strong negative environ­mental impact, was a fast process, with the equilibrium time of 120 min. The adsorption iso­therms were fitted with Langmuir and Freundlich model. The Langmuir ads­orption capacity of qmax = 240.8 mg g-1 for 2.0AC500 classified the selected adsorbent as a very efficient one. The tested adsorption process fol­lowed the kinetics of the pseudo-second-order model.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
A. H. Mohammad and M. Kijevčanin, “Synthesis of activated carbons from water hyacinth biomass and its application as adsorbents in water pollution control: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 1, pp. 69–82, Sep. 2022.
Section
Materials

References

M. A. Bote, V. R. Naik, K. B. Jagadeeshgouda, Mater. Sci. Energy Technol. 3 (2020) 397 (https://doi.org/10.1016/j.mset.2020.02.003)

M. Bilal, J. Ali, N. Hussain, M. Umar, S. Shujah, D. Ahmad, J. Serb. Chem. Soc. 85 (2020) 265 (https://doi.org/10.2298/JSC181108001B)

A. Saning, S. Herou, D. Dechtrirat, C. Ieosakulrat, P. Pakawatpanurut, S. Kaowphong, C. Thanachayanont, M. M. Titirici, L. Chuenchom, RSC Adv. 9 (2019) 24248 (https://doi.org/10.1039/C9RA03873F)

A. Boonpoke, J. Environ. Biol. 36 (2015) 1143 (http://www.jeb.co.in/journal_issues/201509_sep15/paper_15.pdf)

C. A. Riyanto, E. Prabalaras, J. Phys.: Conf. Ser. 1307 (2019) 012002 (https://doi.org/10.1088/1742-6596/1307/1/012002)

M. I. Din, S. Ashraf, A. Intisar, Sci. Prog. 100 (2017) 299 (https://doi.org/10.3184/003685017X14967570531606)

A. Regti, M. R. Laamari, S. E. Stiriba, M. El-Haddad, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017) 10 (https://doi.org/10.1016/j.jaubas.2017.01.003)

Z. Hu, M. P. Srinivasan, Micropor. Mesopor. Mater. 43 (2001) 267 (https://doi.org/ 10.1016/S1387-1811(00)00355-3)

Z. Yue, J. Economy, Micropor.Mesopor. Mater. 96 (2006) 314 (https://doi.org/10.1016/j.micromeso.2006.07.025)

K. Wu, B. Gao, J. Su, X. Peng, X. Zhang, J. Fu, P. K. Chu, RSC Adv. 6 (2016) 29996 (https://doi.org/10.1039/C5RA25098F )

Y. Huang, L. Shunxing, C. Jianhua, Z. Xueliang, C. Yiping, Appl. Surf. Sci. 293 (2014) 160 (https://doi.org/10.1016/j.apsusc.2013.12.123)

S. T. Senthilkumar, R. Kalai Selvan, Y. S. Lee, J. S. Melo, J. Mater. Chem., A 1 (2013) 1086 (https://doi.org/10.1039/c2ta00210h1086)

M. T. Scholtz, E. Voldner, A. C. McMillan, B. J. Van Heyst, Atmos. Environ. 36 (2002) 5005 (https://doi.org/10.1016/S1352-2310(02)00570-8)

M. Schweizer, K. Brilisauer, R. Triebskorn, K. Forchhammer, H. R. Köhler, Peer J. 7 (2019) 7094 (https://doi.org/10.7717/peerj.7094)

W. Morley, S. Seneff, Surg. Neurol. Int. 5 (2014) 134731 (https://doi.org/10.4103/2152-7806.134731)

T. H. Liou, Chem. Eng. J. 158 (2010) 129 (https://doi.org/10.1016/j.cej.2009.12.016)

J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud. Surf. Sci. Catal. 160 (2007) 49 (https://doi.org/10.1016/S0167-2991(07)80008-5)

S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity 2, Academic Press, London, 1982, pp. 41–105 (https://doi.org/10.1002/bbpc.19820861019)

F. Rouquerol, J. Rouquerol, K. Sing, Absorption by powders and porous solids, Principles, Methodology and Applications, Academic press, London, 1999, pp. 165–189 (https://doi.org/10.1016/B978-0-12-598920-6.X5000-3)

M. M. Dubinin, J. Colloid Interface Sci. 23 (1967) 487 (https://doi.org/10.1016/0021-9797(67)90195-6)

E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 (https://doi.org/10.1021/ja01145a126)

I. Langmuir, J. Am. Chem. Soc. 40 (1918)1361 (https://doi.org/10.1021/ja02242a004)

H. M. F. Freundlich, Z. Phys. Chem. A 57 (1906) 385 (https://doi.org/10.1515/zpch-1907-5723)

S. Lagergren, Handlingar 24 (1898) 1 (https://doi.org/10.1002/andp.18983000208)

Y. S. Ho, J. C. Y. Ng, G. McKay, Sep. Purif. Meth. 29 (2000) 189 (https://doi.org/10.1081/SPM-100100009)

A. Ivanovska, L. Pavun, B. Dojčinović, M. Kostić, J. Serb. Chem. Soc. 86 (2021) 885 (https://doi.org/10.2298/JSC210209030I)

F. Rodriguez-Reinoso, M. Molina-Sabio, Coloids Surfaces, A 241 (2004) 15 (https://doi.org/10.1016/j.colsurfa.2004.04.007)

Q. Qian, M. Machida, H. Tatsumoto, Bioresour. Technol. 98 (2007) 353 (https://doi.org/10.1016/j.biortech.2005.12.023)

29. S. Yorgun, N. Vural, H. Demiral, Micropor. Mesopor. Mater. 122 (2009) 189 (https://doi.org/10.1016/j.micromeso.2009.02.032)

A. C. Lua, T. Yang, J. Colloid Interf. Sci. 290 (2005)505 (https://doi.org/10.1016/j.jcis.2005.04.063)

M. M. Gómez-Tamayo, A. Macías-García, M. A. Díez, E. M. Cuerda-Correa, J. Hazard. Mater. 153 (2008) 28 (https://doi.org/10.1016/j.jhazmat.2007.08.012)

K. Mohanty, D. Das, M. N. Biswas, Adsorption 12 (2006) 119 (https://doi.org/10.1007/s10450-006-0374-2)

J. Yang, K. Qiu, Chem. Eng. J. 167 (2011) 148 (https://doi.org/10.1016/j.cej.2010.12.013)

I. Herath, P. Kumarathilaka, M. I. Al-Wabel, A. Abduljabbar, M. Ahmad, A. R. A. Usman, M. Vithanage, Micropor. Mesopor. Mater. 225 (2016) 280 (https://doi.org/10.1016/j.micromeso.2016.01.017)

B. H. Hameed, R. R. Krishni, S. A. Sata, J. Hazard. Mater. 162 (2009) 305 (https://doi.org/10.1016/j.jhazmat.2008.05.036)

M. M. Nourouzi, T. G. Chuah, T. S. Y. Choong, Desalin. Water Treat. 24 (2010) 321 (https://doi.org/10.5004/dwt.2010.1461)

K. Sen, J. K. Datta, N. K. Mondal, Appl. Water Sci. 9 (2019) 162 (https://doi.org/10.1007/s13201-019-1036-3)

D. C. Nguyena, A. I. Vezentseva, P. V. Sokolovskiyc, A. A. Greishc, Russ. J. Phys. Chem., A 95 (2021) 1212 (https://doi.org/10.1134/S0036024421060194)

Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Y. Li, Y. Suo, T. Lic, J. Wang, J. Mater. Chem. 6 (2018) 2184 (https://doi.org/10.1039/C7TA08399H)

F. Chen, C. Zhou, G. Li, F. Peng, Arab. J. Chem. 9 (2016) S1665 (https://doi.org/10.1016/j.arabjc.2012.04.014).

Similar Articles

You may also start an advanced similarity search for this article.