Synthesis of activated carbons from water hyacinth biomass and its application as adsorbents in water pollution control Scientific paper

Main Article Content

Ahmad Hakky Mohammad
Mirjana Kijevčanin


The water hyacinth biomass was used for the synthesis of activated carbons in a process of chemical activation with ZnCl2, followed by controlled pyrolysis. The applied impregnation weight ratios ZnCl2 and dry hyacinth bio­mass were in the range of 0.5–3.5. The carbonization was conducted at four different temperatures (400–700 °C) under an inert atmosphere. The highest yield of activated carbon was obtained for the impregnation ratio of 0.5 and carbon­ization temperature of 400 °C. The samples were characterized using elemental analysis, adsorption–desorption isotherms of nitrogen and SEM ana­lysis. The activated carbon obtained with an impregnation ratio 2.0 and carbon­ization temperature of 500 °C (2.0AC500) showed the highest values of specific surface area and total pore volume of 1317 m2 g-1 and 0.697 cm3 g-1, respect­ively. The adsorption of glyphosate, pesticide with a strong negative environ­mental impact, was a fast process, with the equilibrium time of 120 min. The adsorption iso­therms were fitted with Langmuir and Freundlich model. The Langmuir ads­orption capacity of qmax = 240.8 mg g-1 for 2.0AC500 classified the selected adsorbent as a very efficient one. The tested adsorption process fol­lowed the kinetics of the pseudo-second-order model.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
A. H. Mohammad and M. Kijevčanin, “Synthesis of activated carbons from water hyacinth biomass and its application as adsorbents in water pollution control: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 1, pp. 69–82, Sep. 2022.


M. A. Bote, V. R. Naik, K. B. Jagadeeshgouda, Mater. Sci. Energy Technol. 3 (2020) 397 (

M. Bilal, J. Ali, N. Hussain, M. Umar, S. Shujah, D. Ahmad, J. Serb. Chem. Soc. 85 (2020) 265 (

A. Saning, S. Herou, D. Dechtrirat, C. Ieosakulrat, P. Pakawatpanurut, S. Kaowphong, C. Thanachayanont, M. M. Titirici, L. Chuenchom, RSC Adv. 9 (2019) 24248 (

A. Boonpoke, J. Environ. Biol. 36 (2015) 1143 (

C. A. Riyanto, E. Prabalaras, J. Phys.: Conf. Ser. 1307 (2019) 012002 (

M. I. Din, S. Ashraf, A. Intisar, Sci. Prog. 100 (2017) 299 (

A. Regti, M. R. Laamari, S. E. Stiriba, M. El-Haddad, J. Assoc. Arab Univ. Basic Appl. Sci. 24 (2017) 10 (

Z. Hu, M. P. Srinivasan, Micropor. Mesopor. Mater. 43 (2001) 267 ( 10.1016/S1387-1811(00)00355-3)

Z. Yue, J. Economy, Micropor.Mesopor. Mater. 96 (2006) 314 (

K. Wu, B. Gao, J. Su, X. Peng, X. Zhang, J. Fu, P. K. Chu, RSC Adv. 6 (2016) 29996 ( )

Y. Huang, L. Shunxing, C. Jianhua, Z. Xueliang, C. Yiping, Appl. Surf. Sci. 293 (2014) 160 (

S. T. Senthilkumar, R. Kalai Selvan, Y. S. Lee, J. S. Melo, J. Mater. Chem., A 1 (2013) 1086 (

M. T. Scholtz, E. Voldner, A. C. McMillan, B. J. Van Heyst, Atmos. Environ. 36 (2002) 5005 (

M. Schweizer, K. Brilisauer, R. Triebskorn, K. Forchhammer, H. R. Köhler, Peer J. 7 (2019) 7094 (

W. Morley, S. Seneff, Surg. Neurol. Int. 5 (2014) 134731 (

T. H. Liou, Chem. Eng. J. 158 (2010) 129 (

J. Rouquerol, P. Llewellyn, F. Rouquerol, Stud. Surf. Sci. Catal. 160 (2007) 49 (

S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity 2, Academic Press, London, 1982, pp. 41–105 (

F. Rouquerol, J. Rouquerol, K. Sing, Absorption by powders and porous solids, Principles, Methodology and Applications, Academic press, London, 1999, pp. 165–189 (

M. M. Dubinin, J. Colloid Interface Sci. 23 (1967) 487 (

E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 (

I. Langmuir, J. Am. Chem. Soc. 40 (1918)1361 (

H. M. F. Freundlich, Z. Phys. Chem. A 57 (1906) 385 (

S. Lagergren, Handlingar 24 (1898) 1 (

Y. S. Ho, J. C. Y. Ng, G. McKay, Sep. Purif. Meth. 29 (2000) 189 (

A. Ivanovska, L. Pavun, B. Dojčinović, M. Kostić, J. Serb. Chem. Soc. 86 (2021) 885 (

F. Rodriguez-Reinoso, M. Molina-Sabio, Coloids Surfaces, A 241 (2004) 15 (

Q. Qian, M. Machida, H. Tatsumoto, Bioresour. Technol. 98 (2007) 353 (

29. S. Yorgun, N. Vural, H. Demiral, Micropor. Mesopor. Mater. 122 (2009) 189 (

A. C. Lua, T. Yang, J. Colloid Interf. Sci. 290 (2005)505 (

M. M. Gómez-Tamayo, A. Macías-García, M. A. Díez, E. M. Cuerda-Correa, J. Hazard. Mater. 153 (2008) 28 (

K. Mohanty, D. Das, M. N. Biswas, Adsorption 12 (2006) 119 (

J. Yang, K. Qiu, Chem. Eng. J. 167 (2011) 148 (

I. Herath, P. Kumarathilaka, M. I. Al-Wabel, A. Abduljabbar, M. Ahmad, A. R. A. Usman, M. Vithanage, Micropor. Mesopor. Mater. 225 (2016) 280 (

B. H. Hameed, R. R. Krishni, S. A. Sata, J. Hazard. Mater. 162 (2009) 305 (

M. M. Nourouzi, T. G. Chuah, T. S. Y. Choong, Desalin. Water Treat. 24 (2010) 321 (

K. Sen, J. K. Datta, N. K. Mondal, Appl. Water Sci. 9 (2019) 162 (

D. C. Nguyena, A. I. Vezentseva, P. V. Sokolovskiyc, A. A. Greishc, Russ. J. Phys. Chem., A 95 (2021) 1212 (

Q. Yang, J. Wang, X. Chen, W. Yang, H. Pei, N. Hu, Y. Li, Y. Suo, T. Lic, J. Wang, J. Mater. Chem. 6 (2018) 2184 (

F. Chen, C. Zhou, G. Li, F. Peng, Arab. J. Chem. 9 (2016) S1665 (