Diagnostics of laser-induced plasma from a thin film of oil on a silica wafer Scientific paper
Main Article Content
Abstract
In this study, plasma induced by a nanosecond Nd:YAG laser on thin oil films deposited on a silica wafer was characterized by evaluating the main plasma parameters. Spatially and temporally integrated spectral measurements were performed under experimental conditions optimized for elemental analysis of trace metals in oil. Time-resolved values of the spectral line intensities, electron number density, and plasma temperature were obtained from time-integrated measurements by subtracting averaged spectra recorded at different time delays. The electron number density was estimated using the Stark broadened profile of the hydrogen Balmer alpha line. Ionization temperatures were derived from Mg ionic to atomic line intensity ratios. The obtained apparent values of time-resolved plasma parameters were in the range of 1.1×1017 cm-3 (1.5 μs) to 1.5×1016 cm-3 (4 μs) and 9400 K (3 μs) to 7200 K (5 μs), depending on the delay time. Emission spectra of C2 and CN molecules were used to evaluate the rotational and vibrational temperature.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-9/2021-14/200024;451-03-9/2021-14/200146;451-03-9/2021-14/200017
References
D. A. Cremers, R. C. Chinni, Appl. Spectrosc. Rev. 44 (2009) 457 (https://dx.doi.org/10.1080/05704920903058755)
R. Noll, Laser-Induced Breakdown Spectroscopy, Springer, Heidelberg, 2012 (https://dx.doi.org/10.1007/978-3-642-20668-9)
D. W. Hahn, N. Omenetto, Appl. Spectrosc. 64 (2010) 335A (https://dx.doi.org/10.1366/000370210793561691)
D. W. Hahn, N. Omenetto, Appl. Spectrosc. 66 (2012) 347 (https://dx.doi.org/10.1366/11-06574)
V. Lazic, in Laser-Induced Breakdown Spectroscopy, S. Musazzi, U. Perini (Eds.), Springer-Verlag, Berlin, 2014, p. 195 (https://doi.org/10.1007/978-3-642-45085-3_8)
V. Lazic, R. Fantoni, A. Palucci, M. Ciaffi, Appl. Spectrosc. 71 (2017) 670 (https://dx.doi.org/10.1177/0003702816685096)
N. Aras, Ş. Yalçın, Talanta 149 (2016) 53 (https://dx.doi.org/10.1016/j.talanta.2015.11.031)
M. Vinić, E. Aruffo, F. Andreoli, M. Ivković, V. Lazic, Spectrochim. Acta, B 164 (2020) 105765 (https://dx.doi.org/10.1016/j.sab.2020.105765)
K. Rifai, S. Laville, F. Vidal, M. Sabsabi, M. Chaker, J. Anal. At. Spectrom. 27 (2012) 276 (https://dx.doi.org/10.1039/c1ja10178a)
L. St-Onge, E. Kwong, M. Sabsabi, E.B. Vadas, J. Pharm. Biomed. Anal. 36 (2004) 277 (https://dx.doi.org/10.1016/j.jpba.2004.06.004)
P. Yaroshchyk, R. J. S. Morrison, D. Body, B. L. Chadwick, Spectrochim. Acta, B 60 (2005) 986 (https://dx.doi.org/10.1016/j.sab.2005.03.011)
N-H. Cheung, E. S. Yeung, Anal. Chem. 66 (1994) 929 (https://dx.doi.org/10.1021/ac00079a003)
N. K. Rai, A. K. Rai, J. Hazard. Mater. 150 (2008) 835 (https://dx.doi.org/10.1016/j.jhazmat.2007.10.044)
E. Grifoni, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, V. Palleschi, J. Spectrosc. 2014 (2014) 1 (https://dx.doi.org/10.1155/2014/849310)
C. Aragón, J. A. Aguilera, Spectrochim. Acta, B 63 (2008) 893 (https://dx.doi.org/10.1016/j.sab.2008.05.010)
J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17 (1977) 233 (https://dx.doi.org/10.1016/0022-4073(77)90161-3)
N. Konjević, M. Ivković, N. Sakan, Spectrochim. Acta, B 76 (2012) 16 (https://dx.doi.org/10.1016/j.sab.2012.06.026)
M. A. Gigosos, M. A. González, V. Cardeñoso, Spectrochim. Acta, B 58 (2003) 1489 (https://dx.doi.org/10.1016/S0584-8547(03)00097-1)
M. A. Gonzalez, private communication (2012)
R. Ahmed, N. Ahmed, J. Iqbal, M. A. Baig, Phys. Plasmas 23 (2016) 083101 (https://dx.doi.org/10.1063/1.4959866)
P. W. J .M. Boumans, Theory of Spectrochemical Excitation, Hilger &Watts LTD, London, 1966
J. M. Mermet, Anal. Chim. Acta 250 (1991) 85 (https://dx.doi.org/10.1016/0003-2670(91) 85064-Y)
E. Tognoni, M. Hidalgo, A. Canals, G. Cristoforetti, S. Legnaioli, A. Salvetti, V. Palleschi, Spectrochim. Acta, B 62 (2007) 435 (https://dx.doi.org/10.1016/j.sab.2007.05.006)
W. Ansbacher, Y. Li, E. H. Pinnington, Phys. Lett., A 139 (1989) 165 (https://dx.doi.org/10.1016/0375-9601(89)90353-8)
A. D. Pradhan, H. Partridge, C. W. Bauschlicher, J. Chem. Phys. 101 (1994) 3857 (https://dx.doi.org/10.1063/1.467503)
J. Luque, D. R. Crosley, SRI Int. MP 99 (1999) https://www.sri.com/engage/products-solutions/lifbase
C . M .Western, J. Quant. Spectrosc. Radiat. Transf. 186 (2017) 221 (https://dx.doi.org/10.1016/j.jqsrt.2016.04.010)
A. De Giacomo, J. Hermann, J. Phys., D 50 (2017) 183002 (https://dx.doi.org/10.1088/1361-6463/aa6585)
M. Venugopalan, Reactions under plasma conditions, John Wiley and Sons, Inc, New York, 1971.