Diagnostics of laser-induced plasma from a thin film of oil on a silica wafer Scientific paper

Main Article Content

Milica Vinić
https://orcid.org/0000-0001-7438-7058
Miroslav Kuzmanović
Jelena Savović
https://orcid.org/0000-0001-7828-6385
Milivoje Ivković
https://orcid.org/0000-0003-4421-0002

Abstract

In this study, plasma induced by a nanosecond Nd:YAG laser on thin oil films deposited on a silica wafer was characterized by evaluating the main plasma parameters. Spatially and temporally integrated spectral measurements were performed under experimental conditions optimized for elemental ana­lysis of trace metals in oil. Time-resolved values of the spectral line intensities, electron number density, and plasma temperature were obtained from time-int­egrated measurements by subtracting averaged spectra recorded at different time delays. The electron number density was estimated using the Stark broad­ened profile of the hydrogen Balmer alpha line. Ionization temperatures were derived from Mg ionic to atomic line intensity ratios. The obtained apparent values of time-resolved plasma parameters were in the range of 1.1×1017 cm-3 (1.5 μs) to 1.5×1016 cm-3 (4 μs) and 9400 K (3 μs) to 7200 K (5 μs), depending on the delay time. Emission spectra of C2 and CN molecules were used to eva­luate the rotational and vibrational temperature.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Vinić, M. Kuzmanović, J. Savović, and M. Ivković, “Diagnostics of laser-induced plasma from a thin film of oil on a silica wafer: Scientific paper”, J. Serb. Chem. Soc., vol. 88, no. 2, pp. 153–167, Jul. 2022.
Section
Analytical Chemistry
Author Biography

Miroslav Kuzmanović, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia

   

Funding data

References

D. A. Cremers, R. C. Chinni, Appl. Spectrosc. Rev. 44 (2009) 457 (https://dx.doi.org/10.1080/05704920903058755)

R. Noll, Laser-Induced Breakdown Spectroscopy, Springer, Heidelberg, 2012 (https://dx.doi.org/10.1007/978-3-642-20668-9)

D. W. Hahn, N. Omenetto, Appl. Spectrosc. 64 (2010) 335A (https://dx.doi.org/10.1366/000370210793561691)

D. W. Hahn, N. Omenetto, Appl. Spectrosc. 66 (2012) 347 (https://dx.doi.org/10.1366/11-06574)

V. Lazic, in Laser-Induced Breakdown Spectroscopy, S. Musazzi, U. Perini (Eds.), Springer-Verlag, Berlin, 2014, p. 195 (https://doi.org/10.1007/978-3-642-45085-3_8)

V. Lazic, R. Fantoni, A. Palucci, M. Ciaffi, Appl. Spectrosc. 71 (2017) 670 (https://dx.doi.org/10.1177/0003702816685096)

N. Aras, Ş. Yalçın, Talanta 149 (2016) 53 (https://dx.doi.org/10.1016/j.talanta.2015.11.031)

M. Vinić, E. Aruffo, F. Andreoli, M. Ivković, V. Lazic, Spectrochim. Acta, B 164 (2020) 105765 (https://dx.doi.org/10.1016/j.sab.2020.105765)

K. Rifai, S. Laville, F. Vidal, M. Sabsabi, M. Chaker, J. Anal. At. Spectrom. 27 (2012) 276 (https://dx.doi.org/10.1039/c1ja10178a)

L. St-Onge, E. Kwong, M. Sabsabi, E.B. Vadas, J. Pharm. Biomed. Anal. 36 (2004) 277 (https://dx.doi.org/10.1016/j.jpba.2004.06.004)

P. Yaroshchyk, R. J. S. Morrison, D. Body, B. L. Chadwick, Spectrochim. Acta, B 60 (2005) 986 (https://dx.doi.org/10.1016/j.sab.2005.03.011)

N-H. Cheung, E. S. Yeung, Anal. Chem. 66 (1994) 929 (https://dx.doi.org/10.1021/ac00079a003)

N. K. Rai, A. K. Rai, J. Hazard. Mater. 150 (2008) 835 (https://dx.doi.org/10.1016/j.jhazmat.2007.10.044)

E. Grifoni, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, V. Palleschi, J. Spectrosc. 2014 (2014) 1 (https://dx.doi.org/10.1155/2014/849310)

C. Aragón, J. A. Aguilera, Spectrochim. Acta, B 63 (2008) 893 (https://dx.doi.org/10.1016/j.sab.2008.05.010)

J. J. Olivero, R. L. Longbothum, J. Quant. Spectrosc. Radiat. Transf. 17 (1977) 233 (https://dx.doi.org/10.1016/0022-4073(77)90161-3)

N. Konjević, M. Ivković, N. Sakan, Spectrochim. Acta, B 76 (2012) 16 (https://dx.doi.org/10.1016/j.sab.2012.06.026)

M. A. Gigosos, M. A. González, V. Cardeñoso, Spectrochim. Acta, B 58 (2003) 1489 (https://dx.doi.org/10.1016/S0584-8547(03)00097-1)

M. A. Gonzalez, private communication (2012)

R. Ahmed, N. Ahmed, J. Iqbal, M. A. Baig, Phys. Plasmas 23 (2016) 083101 (https://dx.doi.org/10.1063/1.4959866)

P. W. J .M. Boumans, Theory of Spectrochemical Excitation, Hilger &Watts LTD, London, 1966

J. M. Mermet, Anal. Chim. Acta 250 (1991) 85 (https://dx.doi.org/10.1016/0003-2670(91) 85064-Y)

E. Tognoni, M. Hidalgo, A. Canals, G. Cristoforetti, S. Legnaioli, A. Salvetti, V. Palleschi, Spectrochim. Acta, B 62 (2007) 435 (https://dx.doi.org/10.1016/j.sab.2007.05.006)

W. Ansbacher, Y. Li, E. H. Pinnington, Phys. Lett., A 139 (1989) 165 (https://dx.doi.org/10.1016/0375-9601(89)90353-8)

A. D. Pradhan, H. Partridge, C. W. Bauschlicher, J. Chem. Phys. 101 (1994) 3857 (https://dx.doi.org/10.1063/1.467503)

J. Luque, D. R. Crosley, SRI Int. MP 99 (1999) https://www.sri.com/engage/products-solutions/lifbase

C . M .Western, J. Quant. Spectrosc. Radiat. Transf. 186 (2017) 221 (https://dx.doi.org/10.1016/j.jqsrt.2016.04.010)

A. De Giacomo, J. Hermann, J. Phys., D 50 (2017) 183002 (https://dx.doi.org/10.1088/1361-6463/aa6585)

M. Venugopalan, Reactions under plasma conditions, John Wiley and Sons, Inc, New York, 1971.

Most read articles by the same author(s)