Adsorption of bendamustine anti-cancer drug on Al/B–N/P nanocages: A comparative DFT study Scientific paper

Main Article Content

Nosrat Madadi Mahani
https://orcid.org/0000-0001-6967-5979
Reza Behjatmanesh-Ardakani
https://orcid.org/0000-0001-9163-9333
Riya Yosefelahi

Abstract

Anti-cancer drug delivery based on nanocages is important step in drug development process due to reducing side effects and drug-releasing near the tumor cell. We have studied the interaction of the bendamustine anti-cancer drug with the Al/B-N/P nanocages with utilization density functional theory (DFT) approach both in gas and water phases at the B3LYP/6-31G (d,p) level of theory. Results show that the nanocages quantum parameters were some­what varied by the adsorption of the bendamustine drug. The bendamustine drug operates as an electrons donor and can adsorb in the site of the electron’s acceptor of nanocages. The changes in Gibbs energy correspond to a chemi­sorption in both phases. The results indicated that the bond between studied nanocages and bendamustine is covalent. However, all studied nanocages may be favorable candidates for detecting the bendamustine drug. Yet, pristine B12P12 and B12N12 nanocages appeared to be more suitable for drug delivery than Al12P12 and Al12N12 based on their recovery times.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
N. Madadi Mahani, R. . Behjatmanesh-Ardakani, and R. Yosefelahi, “Adsorption of bendamustine anti-cancer drug on Al/B–N/P nanocages: A comparative DFT study: Scientific paper”, J. Serb. Chem. Soc., vol. 87, no. 10, pp. 1157–1170, May 2022.
Section
Theoretical Chemistry

References

D. Nowak, S. Boehrer, A. Brieger, S. Z. Kim, S. Schaaf, D. Hoelzer, P. S Mitrou, E. Weidmann, K. U. Chow, Leuk. Lymphoma 45 (2004) 1429 (https://doi.org/10.1080/1042819042000198858)

J. W. Friedberg, P. Cohen, L. Chen, K. S. Robinson, A. Forero-Torres, A. S. La Casce, L. E. Fayad, A. Bessudo, E. S. Camacho, M. E. Williams, R. H. van der Jagt, J. W. Oliver, B. D. Cheson, J. Clin. Oncol. 26 (2008) 204 (https://doi.org/10.1200/JCO.2007.12. 5070)

R. Kath, K. Blumenstengel, H. J. Fricke, K. Hoffken, J. Cancer Res. Clin. Oncol. 127 (2001) 48 (https://doi.org/10.1007/s004320000180)

Q. Weng, X. Wang, X. Wang, Y. Bando, D. Goldberg, Chem. Soc. Rev. 45 (2016) 3989 (https://doi.org/10.1039/C5CS00869G)

Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, ACS Nano 3 (2009) 621 (https://doi.org/10.1021/nn800815e)

G. Ciofani, V. Raffa, A. J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Mencissi, A. Cuschieri, Curr. Nanosci. 5 (2009) 33 (https://doi.org/10.2174/157341309787314557)

P. A. Denis, F. Iribarne, Comput. Theor. Chem.1164 (2019) 112538 (https://doi.org/10.1016/j.comptc. 2019.112538)

P. A. Denis, S. Ullah, F. Iribarne, New J. Chem. 44 (2020) 5724 (https://doi.org/10.1039/D0NJ00414F)

P. A. Denis, J. Phys. Org. Chem. 25 (2012) 322 (https://doi.org/10.1002/poc.1918)

A. Soltani, A. Sousaraei, M. Bezi Javan, M. Eskandaric, H. Balakheyli, New J. Chem. 40 (2016) 7018 (https://doi.org/10.1039/C6NJ00146G)

C. A. Celaya, L. F. Hernandez-Ayala, F. B. Zamudio, J. A. Vargas, M. Reina, J. Mol. Liq. 329 (2021) 115528 (https://doi.org/10.1016/j.molliq.2021.115528)

N. Madadi Mahani, R. Yosefelahi, Mor. J. Chem. 6 (2018) 187 (https://doi.org/10.48317/IMIST.PRSM/morjchem-v6i1.8619)

J. S. Al-Otaibi, Y. Sheena Mary, Y. Shyma Mary, G. Serdaroglu, J. Mol. Mod. 27 (2021) 113 (https://doi.org/10.1007/s00894-021-04742-z)

K. A. Soliman, S. Abdel Aal, Diam. Relat. Mater. 117 (2021) 108458 (https://doi.org/10.1016/j.diamond.2021.108458)

A. Hosseinian, E. Vessally, A. Bekhradnia, K. Nejati, G. Rahimpour, Thin Solid Films 640 (2017) 93 (http://dx.doi.org/10.1016/j.tsf.2017.08.049)

V. de Paul Zoua, A. D. Tamafo Fouegue, D. B. Mama, J. N. Ghogomu, R. A. Ntieche, Int. J. Quantum Chem. 122 (2022) e26843 (https://doi.org/10.1002/qua.26843)

A. S. Rad, K. Ayub, J. Alloys Compd. 672 (2016) 161 (https://doi.org/10.1016/j.jallcom.2016.02.139)

Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2 (2006) 364 (https://doi.org/10.1021/ct0502763)

Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2016 (https://gaussian.com/g09citation)

N. Madadi Mahani, F. Sabermahani, A. Shamsolmaali, Pak. J .Pharm. Sci. 32 (6) (2019) 2741 (https://doi.org/10.36721/PJPS.2019.32.6.REG.2741-2744.1)

E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, Physica, E 87 (2017) 308 (https://ui.adsabs.harvard.edu/abs/2017PhyE-87-308V)

H. Xu, X. Tu, G. Fan, Q. Wang, X. Wang, X. Chu, J. Mol. Liq. 318 (2020) 114315 (https://doi.org/10.1016/j.molliq.2020.114315)

A. Hosseinian, E. Vessally, S. Yahyaei, L. Edjlali, A. Bekhradnia, J. Clust. Sci. 28 (2017) 2681 (https://doi.org/10.1007/s10876-017-1253-6)

B. Bankiewicz, P. Matczak, M. Palusiak, J. Phys. Chem., A 116 (2011) 452 (https://doi.org/10.1021/jp210940b)

A. Shokuhi Rad, K. Ayub, J. Alloys Comp. 672 (2016) 161 (https://doi.org/10.1016/j.jallcom.2016.02.139)

M. Karnan, V. Balachandran, M. Murugan, M. K. Murali, Spectrochim. Acta 130 (2014) 143 (https://doi.org/10.1016/J.SAA.2014.03.128)

V. V. Menon, E. Foto, Y. S. Mary, E. Karatas, C. Y. Panicker, G. Yalcin, S. Armakovic, S. J. Armakovic, C. V. Alsenoy, I. Yildiz, J. Mol. Struct. 1129 (2017) 86 (https://doi.org/10.1016/J.MOLSTRUC.2016.09. 059)

Y. S. Mary, P. J. Jojo, C.Y. Panicker, C. Van Alsenoy, S. Ataei, I. Yildiz, Spectrochim. Acta, A 122 (2014) 499 (https://doi.org/10.1016/J.SAA.2013.11.025)

Y. S. Mary, P. J. Jojo, C. Y. Panicker, C. Van Alsenoy, S. Ataei, I. Yildiz, Spectrochim. Acta, A 125 (2014) 12 (https://doi.org/10.1016/J.SAA.2014.01.068)

P. Venkata Ramana, T. Sundius , S. Muthuc, K. Chandra Mouli, Y. Rama Krishna, K. Venkata Prasadd, R. Niranjana Devi, A. Irfanf, C. Santhamma, J. Mol. Struct. 1253 (2022) 132211 (https://doi.org/10.1016/j.molstruc.2021.132211)

Y. S. Mary, H.T. Varghese, C. Y. Panicker, M. Girisha, B. K. Sagar, H. S. Yathirajan, A. A. Al-Saadi, C. Van Alsenoy, Spectrochim. Acta 150 (2015) 543 (https://doi.org/10.1016/j.saa.2015.05.090)

B. R. Raajaraman, N. R. Sheela, S. Muthu, Comput. Biol. Chem. 82 (2019) 44 (https://doi.org/10.1016/j.compbiolchem.2019.05.011)

R. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049 (https://doi.org/10.1021/ja00326a036)

C. Martinez, M. Sedano, P. Lopez, J. Mol. Graph. Model. 28 (2009) 196 (https://doi.org/10.1016/j.jmgm.2009.07.002)

C. G. Zhan, J. A. Nichols,D. A. Dixon, J. Phys. Chem., A 107 (2003) 4184 (https://doi.org/10.1021/jp0225774)

A.Shokuhi Rad, A. Ayub, J. Alloys Cmpd. 672 (2016) 161 (https://doi.org/10.1016/j.jallcom.2016.02.139)

S. Kaviani, S. Shahab, M. Sheikhi, Phys. E: Low-Dimens. Syst. Nanostruct. 126 (2021) 114473 (https://doi.org/10.1016/j.physe.2020.114473)

G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag, Th. Frauenheim, Chem. Phys. Lett. 268 (1997) 352 (https://doi.org/10.1016/S0009-2614(97)00214-5)

S. Peng, K. Cho, P. Qi, H. Dai, Chem. Phys. Let. 387 (2004) 271 (https://doi.org/10.1016/j.cplett.2004.02.026)

P. Popelier, J. Phys. Chem., A 102 (1998) 1873 (https://doi.org/10.1021/jp9805048).