Solid-phase extraction of estrogen hormones onto chemically modified carbon cryogel
Main Article Content
Abstract
This study introduces a novel solid-phase extraction (SPE) method utilizing pristine and chemically treated carbon cryogel (CC) as an adsorbent for the isolation and enrichment of estrogen hormones (estrone, 17β-estradiol, and 17α-ethinylestradiol) from water samples. High recovery values (82-95 %) were obtained after optimizing the SPE technique, which included adsorbent mass and chemical treatment, sample volume and pH, and elution solvent type and volume. The developed analytical method, based on SPE coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS), proves to be selective, efficient, and cost-effective for the determination of selected estrogens. The utilization of self-made cartridges with chemically modified CC produced results comparable to those obtained with commercial cartridges while employing significantly less material. Furthermore, the selectivity of the employed materials contributed to minor matrix effects. The optimized method was successfully applied to analyze estrogen hormones in groundwater, surface water, and wastewater samples, with the results highlighting the importance of monitoring these contaminants in the aquatic environment.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution license 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Funding data
-
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Grant numbers 451-03-65/2024-03/200135;451-03-66/2024-03/200287
References
E.M.L.Sousa, R.A.S. Dias, E.R. Sousa, N.M. Brito, A.S. Freitas, G.S. Silva, L.K. Silva, D.L.D. Lima, V.I. Esteves, G.S. Silva, Water. Air. Soil. Pollut. 231 (2020) 172 (https://dx.doi.org/10.1007/s11270-020-04552-8)
C.L.S. Vilela, J.P. Bassin, R.S. Peixoto, Environ. Pollut. 235 (2018) 546 (https://dx.doi.org/10.1016/j.envpol.2017.12.098)
M. Bilal, D. Barceló, H.M.N. Iqbal, Sci. Total Environ. 800 (2021) 149635 (https://dx.doi.org/10.1016/j.scitotenv.2021.149635)
A. González, J. Avivar, F. Maya, C. Palomino Cabello, G. Turnes Palomino, V. Cerdà, Anal. Bioanal. Chem. 409 (2017) 225 (https://dx.doi.org/10.1007/s00216-016-9988-8)
E. Simon, A. Duffek, C. Stahl, M. Frey, M. Scheurer, J. Tuerk, L. Gehrmann, S. Könemann, K. Swart, P. Behnisch, D. Olbrich, F. Brion, S. Aït-Aïssa, R. Pasanen-Kase, I. Werner, E.L.M. Vermeirssen, Environ. Int. 159 (2022) 107033 (https://dx.doi.org/10.1016/j.envint.2021.107033)
J. Wang, Y. Zhu, Enviromen. Toxicol. Pharmacol. 52 (2017) 69
(https://dx.doi.org/10.1016/j.etap.2017.03.018)
Y. Li, L. Yang, H. Zhen, X. Chen, M. Sheng, K. Li, W. Xue, H. Zhao, S. Meng, G. Cao, J. Chromatogr. B. 1168 (2021) 122559 (https://dx.doi.org/10.1016/j.jchromb.2021.122559)
J. Zhang, L. Zang, T. Wang, X. Wang, M. Jia, D. Zhang, H. Zhang, Food Chem. 333 (2020) 127529 (https://dx.doi.org/10.1016/j.foodchem.2020.127529)
D. Mutavdžić Pavlović, S. Babić, A.J.M. Horvat, M. Kaštelan-Macan, Trends Anal. Chem. 26 (2007) 1062 (https://dx.doi.org/10.1016/j.trac.2007.09.010)
T. Z. Minović, J. J. Gulicovski, M. M. Stoiljkovic, B. M. Jokic, Lj. S. Živković, B. Z. Matović, B. M. Babić, Micropor. Mesopor. Mater. 201 (2015) 271 (https://dx.doi.org/10.1016/j.micromeso.2014.09.031)
L. Wang, G. Chen, H. Shu, X. Cui, Z. Luo, C. Chang, A. Zeng, J. Zhang, Q. Fu, J. Chromatogr. A . 1638 (2021) 461889 (https://dx.doi.org/10.1016/j.chroma.2021.461889)
M. Tagliavini, F. Engel, P. G. Weidler, T. Scherer, A. I. Schäfer, J. Hazard. Mater. 337 (2017) 126 (https://dx.doi.org/10.1016/j.jhazmat.2017.03.036)
B. Lalović, T. Đurkić, M. Vukčević, I. Janković-Častvan, A. Kalijadis, Z. Laušević, M. Laušević, Environ. Sci. Pollut. Res. 24 (2017) 20784 (https://dx.doi.org/10.1007/s11356-017-9748-0)
D. Prokić, M. Vukčević, A. Mitrović, M. Maletić, A. Kalijadis, I. Janković-Častvan, T. Đurkić, Environ. Sci. Pollut. Res. 29 (2022). (https://dx.doi.org/10.1007/s11356-021-15970-4)
D. Prokić, M. Vukčević, A. Kalijadis, M. Maletić, B. Babić, T. Đurkić, Fibers Polym. 21 (2020) 2263 (https://dx.doi.org/10.1007/s12221-020-9758-2)
A. Celzard, V. Fierro, G. Amaral-Labat, Adsorption by Carbon Gels, in Novel Carbon Adsorbents, J.M.D. Tascón, Ed., Elsevier, Amsterdam, The Netherlands, 2012, p. 207 (https://dx.doi.org/10.1016/B978-0-08-097744-7.00007-7)
B. Jiang, Y. Wang, D. Wang, M. Yao, C. Fan, J. Dai, Water Sci. Technol. 80 (2019) (https://dx.doi.org/10.2166/wst.2020.072)
J. H. Kim, S. Y. Hwang, J. E. Park, G. B. Lee, H. Kim, S. Kim, B. U. Hong, Carbon Lett. 29 (2019) 281 (https://dx.doi.org/10.1007/s42823-019-00024-0)
L. H. Jiang, Y. G. Liu, G. M. Zeng, F. Y. Xiao, X. J. Hu, X. Hu, H. Wang, T. T. Li, L. Zhou, X. F. Tan, Chem. Eng. J. 284 (2016) 93 (https://dx.doi.org/10.1016/j.cej.2015.08.139)
G. J. Maranata, N. O. Surya, A. N. Hasanah, Heliyon 7 (2021) e05934 (https://dx.doi.org/10.1016/j.heliyon.2021.e05934)
C. Estevan, E. Vilanova, Ethyl acetate in Encyclopedia of Toxicology, P. Wexler, Ed., Elsevier, London, UK, 2014, p. 506 (https://dx.doi.org/10.1016/B978-0-12-386454-3.00502-9)
C. Pacheco, R. Magalhães, M. Fonseca, P. Silveira, I. Brandão, J. Acute Med. 6 (2016) 43 (https://dx.doi.org/10.1016/j.jacme.2016.03.008)
L. H. G. Coelho, T. A. DeJesus, M. Y. Kohatsu, G. T. Poccia, V. Chicarolli, K. Helwig, C. Hunter, J. Roberts, P. Teedon, O. Pahl, Water Air. Soil Pollut. 231 (2020) 150 (https://dx.doi.org/10.1007/s11270-020-04477-2)
X. Zhu, Y. Zhang, P. Liu, X. Bai, N. Chen, Y. Zhang, J. Chem. 2021 (2021) 9970518 (https://dx.doi.org/10.1155/2021/9970518)
A. González, K. J. Kroll, C. Silva-Sanchez, P. Carriquiriborde, J. I. Fernandino, N. D. Denslow, G. M. Somoza, Sci. Total Environ. 743 (2020) 140401 (https://dx.doi.org/10.1016/j.scitotenv.2020.140401)
A. Glineur, K. Nott, P. Carbonnelle, S. Ronkart, G. Purcaro, J. Chromatogr. A. 1624 (2020) 461242 (https://dx.doi.org/10.1016/j.chroma.2020.461242)
S. Liu, G.G. Ying, J. L. Zhao, F. Chen, B. Yang, L. J. Zhou, H. J. Lai, J. Chromatogr. A. 1218 (2011) 1367 (https://dx.doi.org/10.1016/j.chroma.2011.01.014)
E. Vulliet, L. Wiest, R. Baudot, M. F. Grenier-Loustalot, J. Chromatogr. A. 1210 (2008) 84 (https://dx.doi.org/10.1016/j.chroma.2008.09.034)
E. W. Peterson, L. A. Hanna, Environ. Earth Sci. 75 (2016) 384 (https://dx.doi.org/10.1007/s12665-016-5259-4)
J. Kapelewska, U. Kotowska, K. Wiśniewska, Environ. Sci. Pollut. Res. 23 (2016) 1642 (https://dx.doi.org/10.1007/s11356-015-5359-9)
E. Pignotti, M. Farré, D. Barceló, E. Dinelli, Environ. Sci. Pollut. Res. 24 (2017) 21153 (https://dx.doi.org/10.1007/s11356-017-9756-0)
B. Woźniak, A. Klopot, I. Matraszek-Zuchowska, K. Sielska, J. Zmudzki, J. Vet. Res. 58 (2014) 603 (https://dx.doi.org/10.2478/bvip-2014-0093)
T. Hadibarata, R.A. Kristanti, A.H. Mahmoud, J. Water Health. 18 (2020) 38 (https://dx.doi.org/10.2166/wh.2019.100)
T.H. Nazifa, R.A. Kristanti, M. Ike, M. Kuroda, T. Hadibarata, Toxicol. Environ. Health Sci. 12 (2020) 65 (https://dx.doi.org/10.1007/s13530-020-00036-8)
K. Zhang, Y. Zhao, K. Fent, Sci. Technol. 51 (2017) 6498 (https://dx.doi.org/10.1021/acs.est.7b01231)
M. J. Rocha, C. Cruzeiro, M. Reis, M. Â. Pardal, E. Rocha, Env. Monit Assess. 186 (2014) 3337 (https://dx.doi.org/10.1007/s10661-014-3621-0)
G.P. Pessoa, N.C. de Souza, C.B. Vidal, J.A.C. Alves, P.I.M. Firmino, R.F. Nascimento, A.B. dos Santos, Sci. Total Environ. 490 (2014) 288 (https://dx.doi.org/10.1016/j.scitotenv.2014.05.008)
V. Gabet-Giraud, C. Miège, J. M. Choubert, S. M. Ruel, M. Coquery, Sci. Total Environ. 408 (2010) 4257 (https://dx.doi.org/10.1016/j.scitotenv.2010.05.023)
M. Česen, D. Heath, M. Krivec, J. Košmrlj, T. Kosjek, E. Heath, Environ. Pollut. 242 (2018) 143 (https://dx.doi.org/10.1016/j.envpol.2018.06.052)
T. Y. Fang, S. M. Praveena, A. Z. Aris, S. N. S. Ismail, I. Rasdi, Chemosphere 215 (2019) 153 (https://dx.doi.org/10.1016/j.chemosphere.2018.10.032)