Ultrasound and shacking-assisted water-leaching of anions and cations from fly ash

Main Article Content

Marjetka Savić Biserčić
Lato Pezo
Ivana Sredović Ignjatović
Ljubiša Ignjatović
Andrija Savić
Uroš Jovanović
Velibor Andrić

Abstract

Two mechanical extraction techniques were used for the extraction of
environmentaly interesting components of coal fly ash: shaking, during which
the extraction process lasted from 6 up to 24 h, and sonication that lasted
from15 up to 60 min, using water as extractant. The concentration of anions in
fly ash extracts was determined by ion chromatography, while atomic absorption
spectrometry was used for determination of: As, Pb, Cd, Ni, Cr, Zn, Cu,
Fe, Mn and Al. The ultrasonication yielded slightly higher amounts of extracted
anions as well as Pb, Al, Mn and Fe cations, while shaking-assisted
extraction was more efficient for the Cr, As, Zn and Ni ions. The changes in
pH value, particle size distribution within colloid solution, zeta potential and
conductivity during ultrasound-assisted extraction were measured in order to
explain changes that occur on the surface of fly ash particles contacting water
and different processes (adsorption, ion exchange and flocculation) that
develop under natural conditions. Principal Component Analysis was used for
assessing the effect of observed process parameters. It is essential to evaluate
quantity of these elements leachable from coal fly ash into the surface waters in
natural conditions in order to prevent contamination of the environment.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. Savić Biserčić, “Ultrasound and shacking-assisted water-leaching of anions and cations from fly ash”, J. Serb. Chem. Soc., vol. 81, no. 7, pp. 813–827, Aug. 2016.
Section
Environmental Chemistry

References

A. Baba, G. Gurdal, F. Sengunalp, Environ. Monit. Assess. 139 (2008) 287

M. Rodionov, T. Nakata, Sustainability 3 (2011) 1486

X. Querol, R. Juan, A. Lopez-Soler, J.L. Fernandez-Turiel, C.R. Ruiz, Fuel 75 (1996) 821

J. P. Mathews, B. G. Miller, C. Song, H. H. Schobert, F. Botha, R. B. Finkelman, Fuel 105 (2013) 1

B. Valentim, A. Guedes, D. Flores, C. R. Ward, J. C. Hower, Coal Combust. Gasific. Prod. 1 (2009) 14

Z. Mester, M. Angelone, C. Brunori, C. Cremisini, H. Muntan, R. Morabito, Anal. Chim. Acta 395 (1999) 157

R. Iyer, J. Hazard. Mater., B 93 (2002) 321

M. Sager, Fuel 72 (1993) 1327

C. Y. Chang, H. L. Chiang, Z. J. Su, C. F. Wang, J. Chin. Chem. Soc. 52 (2005) 921

F. Priego-Capote, M. D. Lugue de Castro, J. Biochem. Biophys. Methods 70 (2007) 299

F. V. M. Pontes, B. A. de O. Mendes, E. M. F. Souza, F. N. Ferreira, L. I. D. de Silva, M. C. Carneiro, M. I. C. Monteiro, M. D. de Almeida, A. A. Neto, D. S. Vaitsman, Anal. Chim. Acta 659 (2010) 55

A. Ilander, A. Vaisanen, Anal. Chim. Acta 602 (2007) 195

I. de la Catle, N. Cabaleiro, I. Lavilla, C. Bendicho, Int. J. Environ. Anal. Chem. 91 (2011) 1401

A. Vaisanen, A. Kiljunen, J. Environ. Anal. Chem. 85 (2005) 1037

A. Ilander, A. Vaisanen, Ultrason. Sonochem. 16 (2009) 763

S. Sushil, V. S. Batra, Fuel 85 (2006) 2676

A. Elik, Talanta 65 (2005) 882

R. Krgovic, J. Trifkovic, D. Milojkovic-Opsenica, D. Manojlovic, J. Mutic, Sci. World J. (2014) 8

S. Stanišić, Lj.M. Ignjatović, A. Đorđević, M. Stević, J. Serb. Chem. Soc. 76 (2011) 769

I. Sredović, Lj. Rajaković, J. Hazard. Mater. 177 (2010) 445

ASTM D 6357, Standard Test Methods for Determination of Trace Elelments in Coal, Coke and Combustion Residues from Coal Utilization Processes by Inductively Coupled Plasma Atomic Emission Spectrometry, Inductively Coupled Plasma Mass Spectrometry, and Graphite Furnace Atomic Absorption Spectrometry, 2000

D. B. Sarode, R. N. Jadhav, V. A. Khatik, S. T. Ingle, S. B. Attarde, Polish J. Environ. Stud. 19 (2010) 1325

http://www.itl.nist.gov/div898/handbook/pri/section3/pri336.htm (January 24th, 2015)

D. C. Montgomery, Design and Analysis of Experiments, 2nd ed., John Wiley and Sons Inc., New York, 1984, pp. 109–116

www.statsoft.com (January, 24th, 2015)

T. Brlek, L. Pezo, N. Voća, T. Krička, Dj. Vukmirović, R. Čolović, M. Bodroža-Solarov, Fuel Process. Technol. 116 (2013) 250

http://www.itl.nist.gov/div898/handbook/prc/section4/prc471.htm (January, 24th, 2015)

K. Ashley, Trends in Anal.Chem. 17 (1998) 366

M. Legay, N. Gondrexon, S. le Person, P. Boldo, A. Bontemps, Int. J. Chem. Eng. (2011), Article ID 670108

S. Stanišić, Lj. Ignjatović, I. Andjelković, M. Stević, A. Tasić, M. Savić Biserčić, J. Serb. Chem. Soc. 77 (2012) 1287

T. Theis, J. Wirth, Environ. Sci. Technol. 11 (1977) 1096

M. Xu, R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng, Fuel Proc. Tech. 85 (2003) 215

M. Ahmaruzzaman, Prog. Energy Combust. Sci. 36 (2010) 327

Z. T. Yao, M. S. Xia, P. K. Sarker, T. Chen, Fuel 120 (2014) 74

A. W. Adamson, A. P. Gast, Physical Chemistry of surfaces, 6th ed., John Wiley and Sons, New York, 1997, pp. 183–185

K.S. Birdi, Surface Chemistry Essentials, CRC Press, Boca Raton, FL, 2013, p. 186.

Most read articles by the same author(s)

1 2 > >>